精英家教网 > 高中数学 > 题目详情

【题目】1994年到2016年所有关于某项研究成果的540篇论文分布如下图所示.

(1)从这540篇论文中随机抽取一篇来研究,那么抽到2016年发表论文的概率是多少?

(2)如果每年发表该领域有国际影响力的论文超过50篇,我们称这一年是该领域的论文丰年”.若从1994年到2016年中随机抽取连续的两年来研究,那么连续的两年中至少有一年是丰年的概率是多少?

(3)由图判断,从哪年开始连续三年论文数量方差最大?(结论不要求证明)

【答案】(1);(2);(3)见解析

【解析】试题分析:(1)设抽到2016年发表的论文为事件,利用等可能事件概率计算公式能求出抽到2016年发表论文的概率;(2)设至少抽到一个丰年为事件,利用列举法能求出至少一个丰年的概率;(3)81,48,57三个数方差最大,由此能求出结果.

试题解析:(1)设抽到2016年发表的论文为事件A,依题意可知,P(A)=.

(2)设至少抽到一个丰年为事件B,依题意可知,1994~2016的23年中随机抽取连续两年共有22种可能,至少一个丰年的可能情况有2009~2010,2010~2011,2011~2012,2012~2013,2013~2014,2014~2015,2015~2016共计7种可能,P(B)=.

(3)81,48,57三个数方差最大,所以从2013年开始,连续三年论文数方差最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义方程 的实数根 叫做函数 的“新驻点”,若函数 的“新驻点”分别为 ,则 的大小关系为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a2=2,以后各项由an=an1+an2(n≥3)给出.
(1)写出此数列的前5项;
(2)通过公式bn= 构造一个新的数列{bn},写出数列{bn}的前4项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求函数f(x)的最小正周期和对称中心的坐标

(II)设,求函数g(x)在上的最大值,并确定此时x的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求证: 函数是偶函数;

(2)若对任意的,都有,求实数的取值范围;

(3)若函数有且仅有个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过三点A(﹣3,2),B(3,﹣6),C(0,3)的圆的方程为( )
A.x2+y2+4y﹣21=0
B.x2+y2﹣4y﹣21=0
C.x2+y2+4y﹣96=0
D.x2+y2﹣4y﹣96=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】联合国教科文组织规定,每年的4月23日是“世界读书日”.某校研究生学习小组为了解本校学生的阅读情况,随机调查了本校400名学生在这一天的阅读时间(单位:分钟),将时间数据分成5组:,并整理得到如下频率分布直方图.

(1)求的值;

(2)试估计该学校所有学生在这一天的平均阅读时间;

(3)若用分层抽样的方法从这400名学生中抽取50人参加交流会,则在阅读时间为的两组中分别抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=4,2an+1=an+1.
(1)求{an}的通项公式和a5
(2)若要使a≤ ,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧面为等边三角形且垂直于底面

.

(1)证明:

(2)若直线与平面所成角为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案