精英家教网 > 高中数学 > 题目详情
在数列{an}中,a3,a10是方程x2-3x-5=0的两根,若{an}是等差数列,则a5+a8=
3
3
分析:题目给出了一个方程的两根,有根与系数关系求出a3+a10,再根据等差数列的性质知道a5+a8=a3+a10
解答:解:因为a3,a10是方程x2-3x-5=0的两根,所以根据根与系数关系有a3+a10=3,
又数列{an}是等差数列,根据等差中项的概念,所以有a5+a8=a3+a10=3.
故答案为3.
点评:本题考查了等差数列的通项公式,解答此题的关键是熟练等差数列的性质,即m、n、p、q∈N*,若m+n=p+q,则am+an=ap+aq,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案