【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知bcos2 +acos2 = c.
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C= ,△ABC的面积为2 ,求c.
【答案】解:(Ⅰ)证明:由正弦定理得:
即 ,
∴sinB+sinA+sinBcosA+cosBsinA=3sinC
∴sinB+sinA+sin(A+B)=3sinC
∴sinB+sinA+sinC=3sinC
∴sinB+sinA=2sinC
∴a+b=2c
∴a,c,b成等差数列.
(Ⅱ)
∴ab=8
c2=a2+b2﹣2abcosC
=a2+b2﹣ab
=(a+b)2﹣3ab
=4c2﹣24.
∴c2=8得
【解析】(Ⅰ)利用正弦定理以及两角和与差的三角函数,三角形的内角和,化简求解即可.(Ⅱ)利用三角形的面积以及余弦定理化简求解即可.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:.
科目:高中数学 来源: 题型:
【题目】下列命题正确是 , (写出所有正确命题的序号)
①若奇函数f(x)的周期为4,则函数f(x)的图象关于(2,0)对称;
②若a∈(0,1),则a1+a<a ;
③函数f(x)=ln 是奇函数;
④存在唯一的实数a使f(x)=lg(ax+ )为奇函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:
成绩/编号 | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
数学(y) | 130 | 125 | 110 | 95 | 90 |
(参考公式: = , = ﹣ )
参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.
(1)求数学成绩y关于物理成绩x的线性回归方程 = x+ ( 精确到0.1),若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)的表达式为f(x)= (c≠0),则函数f(x)的图象的对称中心为(﹣ , ),现已知函数f(x)= ,数列{an}的通项公式为an=f( )(n∈N),则此数列前2017项的和为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线l的参数方程为: (t为参数),曲线C的极坐标方程为:ρ=4cosθ.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)设直线l与曲线C相交于P,Q两点,求|PQ|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知递增数列{an},a1=2,其前n项和为Sn , 且满足3(Sn+Sn﹣1)= +2(n≥2).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足 =n,求其前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中xOy中,已知曲线E经过点P(1, ),其参数方程为 (α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线E的极坐标方程;
(2)若直线l交E于点A、B,且OA⊥OB,求证: 为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次数学测试之后,数学组的老师对全校数学总成绩分布在[105,135)的n名同学的19题成绩进行了分析,数据整理如下:
组数 | 分组 | 19题满分人数 | 19题满分人数占本组人数比例 |
第一组 | [105,110] | 15 | 0.3 |
第二组 | [110,115) | 30 | 0.3 |
第三组 | [115,120) | x | 0.4 |
第四组 | [120,125) | 100 | 0.5 |
第五组 | [125,130) | 120 | 0.6 |
第六组 | [130,135) | 195 | y |
(Ⅰ)补全所给的频率分布直方图,并求n,x,y的值;
(Ⅱ)现从[110,115)、[115,120)两个分数段的19题满分的试卷中,按分层抽样的方法抽取9份进行展出,并从9份试卷中选出两份作为优秀试卷,优秀试卷在[115,120)中的分数记为ξ,求随机变量ξ的分布列及期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com