A. | an=2n-1 | B. | an=2n | C. | an=2${\;}^{\frac{n(n-1)}{2}}$ | D. | an=2${\;}^{\frac{{n}^{2}}{2}}$ |
分析 由an+1=2nan(n∈N+),可得$\frac{{a}_{n+1}}{{a}_{n}}$=2n.利用“累乘求积”即可得出.
解答 解:∵an+1=2nan(n∈N+),
∴$\frac{{a}_{n+1}}{{a}_{n}}$=2n.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$$•\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{2}}{{a}_{1}}$•a1
=2n-1•2n-2•…•21×1
=${2}^{\frac{n(n-1)}{2}}$.
故选:C.
点评 本题考查了“累乘求积”、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{2}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 必要而不充分条件 | B. | 充分而不必要条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com