【题目】下列命题正确的是( )
A.“若x=3,则x2﹣2x﹣3=0”的否命题是:“若x=3,则x2﹣2x﹣3≠0”
B.在△ABC中,“A>B”是“sinA>sinB”的充要条件
C.若p∧q为假命题,则p∨q一定为假命题
D.“存在x0∈R,使得ex0≤0”的否定是:不存在x0∈R,使得e0”
科目:高中数学 来源: 题型:
【题目】在一次购物抽奖活动中,已知某10张奖券中有6张有奖,其余4张没有奖,且有奖的6张奖券每张均可获得价值10元的奖品.某顾客从此10张奖券中任意抽取3张.
(1)求该顾客中奖的概率;
(2)若约定抽取的3张奖券都有奖时,还要另奖价值6元的奖品,求该顾客获得的奖品总价值(元)的分布列和均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,直线不经过椭圆上顶点,与椭圆交于,不同两点.
(1)当,时,求椭圆的离心率的取值范围;
(2)若,直线与的斜率之和为,证明:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前n项和为,对一切,点都在函数的图像上.
(1)证明:当时,;
(2)求数列的通项公式;
(3)设为数列的前n项的积,若不等式对一切成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知位于轴左侧的圆与轴相切于点且被轴分成的两段圆弧长之比为,直线与圆相交于,两点,且以为直径的圆恰好经过坐标原点.
(1)求圆的方程;
(2)求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等腰Rt△ABC中,∠BAC=90°,腰长为2,D、E分别是边AB、BC的中点,将△BDE沿DE翻折,得到四棱锥B﹣ADEC,且F为棱BC中点,BA.
(1)求证:EF⊥平面BAC;
(2)在线段AD上是否存在一点Q,使得AF∥平面BEQ?若存在,求二面角Q﹣BE﹣A的余弦值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的离心率,左、右焦点分别为,,过右焦点任作一条不垂直于坐标轴的直线l与椭圆C交于A,B两点,的周长为.
(1)求椭圆C的方程;
(2)记点B关于x轴的对称点为点,直线交x轴于点D.求的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直线PB与CD所成角的大小为,求BC的长;
(Ⅱ)求二面角B-PD-A的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com