精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x+3
3x
,数列{an}满足a1=1,an+1=f(
1
an
),n∈N*

(1)求数列{an}的通项公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求Tn
(3)若Tn
m
2
对n∈N*恒成立,求m的最小值.
分析:(1)由f(x)=
2x+3
3x
=
2
3
+
1
x
a1=1,an+1=f(
1
an
),n∈N*
,知an+1=f(
1
an
)=
2
3
+an
,由此能求出数列{an}的通项公式.
(2)由an=
2
3
n+
1
3
,知Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1=-
4
3
(a2+a4+…+a2n)
,由此能求出Tn
(3)由n∈N*,{Tn}递减,知当n=1时,Tn取最大值-
20
9
,由Tn
m
2
时,n∈N*恒成立,知m≥(2Tn)max=-
40
9
,由此能求出m的最小值.
解答:解:(1)∵f(x)=
2x+3
3x
=
2
3
+
1
x
a1=1,an+1=f(
1
an
),n∈N*

an+1=f(
1
an
)=
2
3
+an

∴{an}是以1为首项,以
2
3
为公差的等差数列,
所以an=
2
3
n+
1
3

(2)∵an=
2
3
n+
1
3

∴Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1
=a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1
=-
4
3
(a2+a4+…+a2n)

=-
4
3
[
5
3
n
+
n(n-1)
2
×
4
3
]
=-
4
9
(2n2+3n)

(3)由n∈N*,{Tn}递减,
所以当n=1时,Tn取最大值-
20
9

Tn
m
2
时,n∈N*恒成立,
所以,m≥(2Tn)max=-
40
9

所以,m的最小值为-
40
9
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,考查满足条件的实数的最小值的求法.解题时要认真审题,注意等差数列性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案