精英家教网 > 高中数学 > 题目详情
(2012•葫芦岛模拟)F(-c,0)是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点,P是抛物线y2=4cx上一点,直线FP与圆x2+y2=a2相切于点E,且PE=FE,若双曲线的焦距为2
5
+2,则双曲线的实轴长为(  )
分析:确定∠FPF2=90°,根据△FEO∽△FPF2,可得PF2=2a,过F作x轴的垂线l,过P作PQ⊥l于Q,则PQ=PF2=2a,利用Rt△FPQ∽Rt△F2FQ,在Rt△FEO中,利用勾股定理,双曲线的焦距为2
5
+2,建立方程,从而可求双曲线的实轴长.
解答:解:抛物线y2=4cx的焦点F2(c,0)
∵E为直线FP与以原点为圆心a为半径的圆的切点,PE=EF
∴OE为直线FP的中垂线 (O为原点)
∴OP=OF=c
又FF2=2c,O为FF2中点,OP=c
∴∠FPF2=90°(直角三角形中,直角顶点与斜边中点的连线长度为斜边的一半)
根据△FEO∽△FPF2,可得
PF2
EO
=
FF2
FO
=
2c
c
=2

∵EO=a,∴PF2=2a
过F作x轴的垂线l,过P作PQ⊥l于Q,则PQ=PF2=2a 
又Rt△FPQ∽Rt△F2FQ,令PF=2x=2EF,∴
QP
PF
=
PF
FF2
,即
2a
2x
=
2x
2c
,即x2=ac=EF2
∴在Rt△FEO中,OF2=EF2+EO2,即c2=ac+a2
∵双曲线的焦距为2
5
+2,
∴a2+(1+
5
)a-(1+
5
2=0
a=
-(1+
5
)±(
5
+5)
2

∴a1=2,a2=-
5
-3 (舍)
∴实轴长为4
故选A.
点评:本题考查圆锥曲线的综合,考查双曲线的几何性质,考查学生分析解决问题的能力,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•葫芦岛模拟)已知f(x)=3sinx-πx,命题p:?x∈(0,
π
2
),f(x)<0,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•葫芦岛模拟)已知函数f(x)=
8
3
x3-2x2+bx+a,g(x)=ln(1+2x)+x.
(1)求f(x)的单调区间.
(2)若f(x)与g(x)有交点,且在交点处的切线均为直线y=3x,求a,b的值并证明:在公共定义域内恒有f(x)≥g(x).
(3)设A(x1,g(x1)),B(x2,g(x2)),C(t,g(t))是y=g(x)图象上任意三点,且-
1
2
<x1<t<x2,求证:割线AC的斜率大于割线BC的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•葫芦岛模拟)袋中有6个小球,分别标有数字1,2,3,4,5,6,甲乙两人玩游戏,先由甲从袋中任意摸出一个小球,记下号码a后放回袋中,再由乙摸出一个小球,记下号码b,若|a-b|≤1,就称甲乙两人“有默契”,则甲乙两人“有默契”的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•葫芦岛模拟)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,离心率为
1
2
,过点F且倾斜角为60°的直线l与椭圆交于A、B两点(其中A点在x轴上方),则
|AF|
|BF|
的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•葫芦岛模拟)在四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,PA=AB=BC=
12
CD=a.
(1)求证:面PAD⊥面PAC;
(2)求二面角D-PB-C的余弦值;
(3)求点D到平面PBC的距离.

查看答案和解析>>

同步练习册答案