精英家教网 > 高中数学 > 题目详情
精英家教网如图,边长为2的正方形A1ACC1绕直线CC1旋转90°得到正方形B1BCC1,D为CC1的中点,E为A1B的中点,G为△ADB的重心.
(1)求直线EG与直线BD所成的角;
(2)求直线A1B与平面ADB所成的角的正弦值.
分析:(1)以C为坐标原点,CA,CB,CC1所在直线为x,y,z轴,建立空间直角坐标系,分别求出直线EG与直线BD的方向向量,代入向量夹角公式,即可求出答案.
(2)分别求出直线A1B的方向向量与平面ADB的法向量,代入向量夹角公式,即可求出直线A1B与平面ADB所成的角的正弦值.
解答:解:由题设CC1⊥AC,CC1⊥BC,AC⊥BC
所以,以C为坐标原点,CA,CB,CC1所在直线为x,y,z轴,建立空间直角坐标系
则C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),A1(2,0,2),B1(0,2,2),
所以D(0,0,1),E(1,1,1),G(
2
3
2
3
1
3
)
.(2分)
(1)
EG
=(-
1
3
,-
1
3
,-
2
3
)
BD
=(0,-2,1)
(4分)
所以
EG
BD
=
2
3
-
2
3
=0

EG
BD

所以,直线EG与直线BD所成的角为
π
2
.(5分)
(2)
A1B
=(-2,2,-2)
(6分)
AB
=(-2,2,0)
AD
=(-2,0,1)

n
=(x0y0z0)
为平面ABD的一个法向量
n
AB
=-2x0+2y0=0
n
AD
=-2x0+y0=0

y0=x0
z0=2x0

n
=(1,1,2)
.(8分)
设A1B与平面ADB所成的角为θ
sinθ=|cos?
A1B,
n
>|=
4
2
3
6
=
2
3

即:A1B与平面ADB所成的角为正弦值为
2
3
.(10分)
点评:本题考查的知识点是直线与平面所成的角,异面直线及其所成的角,其中建立空间坐标系,把空间异面直线的夹角问题及直线与平面的夹角问题转化为向量夹角问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图放置的边长为1的正三角形PAB沿x轴滚动,设顶点A(x,y)的纵坐标与横坐标的函数关系式是y=f(x),则f(x)在区间[-2,1]上的解析式是
 
;(说明:“正三角形PAB沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续;类似地,正三角形PAB也可以沿x轴负方向逆时针滚动)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳一模)如图放置的边长为1的正三角形ABC沿x轴的正方向滚动,设顶点A(x,y)的纵坐标与横坐标的函数关系是y=f(x).则f(x)在两个相邻零点间的图象与x轴围成的面积是
3
+
3
4
3
+
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,过正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的边长为2,OP=2,连接AP、BP、CP、DP,M、N分别是AB、BC的中点,以O为原点,射线OM、ON、OP分别为Ox轴、Oy轴、Oz轴的正方向建立空间直角坐标系.若E、F分别为PA、PB的中点,求A、B、C、D、E、F的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图放置的边长为2的正方形PABC沿x轴滚动.设顶点P(x,y)的纵坐标与横坐标的函数关系是y=f(x),则f(x)的最小正周期为
 
;  y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为
 

(说明:“正方形PABC 沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动.)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省四校联考高三(上)期末数学试卷(解析版) 题型:填空题

如图放置的边长为1的正三角形PAB沿x轴滚动,设顶点A(x,y)的纵坐标与横坐标的函数关系式是y=f(x),则f(x)在区间[-2,1]上的解析式是    ;(说明:“正三角形PAB沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续;类似地,正三角形PAB也可以沿x轴负方向逆时针滚动)

查看答案和解析>>

同步练习册答案