精英家教网 > 高中数学 > 题目详情
4.在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,则该三角形的形状是(  )
A.钝角三角形B.锐角三角形C.直角三角形D.不能确定

分析 利用数量积运算性质、三角函数求值即可得出.

解答 解:∵$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,∴-cacosB>0,∴cosB<0.
又B∈(0,π).
∴B为钝角.
故选:A.

点评 本题考查了数量积运算性质、三角函数求值,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.某企业生产A、B、C三种家电,经市场调查决定调整生产方案,计划本季度(按不超过480个工时计算)生产A、B、C三种家电共120台,其中A家电至少生产20台,已知生产A、B、C三种家电每台所需的工时分别为3、4、6个工时,每台的产值分别为20、30、40千元,则按此方案生产,此季度最高产值为(  )千元.
A.3600B.350C.4800D.480

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=4,AB=2.
(1)证明:平面PAD⊥平面PCD;
(2)若F为PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个直三棱柱的三视图如图所示,则该三棱柱的体积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|2x+3|+|2x-1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:函数y=3-ax+1的图象恒过定点(1,3);命题q:若函数y=f(x-3)为偶函数,则函数y=f(x)的图象关于直线x=3对称,则下列命题为真命题的是(  )
A.p∨qB.p∧qC.¬p∧qD.p∨¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}的前n项和为Sn,若${S_n}={n^2}$,数列$\left\{{\frac{2}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和Tn=(  )
A.$\frac{n}{2n+1}$B.$\frac{2n+2}{2n+1}$C.$\frac{2n}{2n+1}$D.$\frac{2n}{2n-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线$l:x=\frac{a^2}{c}$是椭圆$Γ:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0,c=\sqrt{{a^2}-{b^2}}})$的右准线,若椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,右准线方程为x=2.
(1)求椭圆Γ的方程;
(2)已知一直线AB过右焦点F(c,0),交椭圆Γ于A,B两点,P为椭圆Γ的左顶点,PA,PB与右准线交于点M(xM,yM),N(xN,yN),问yM•yN是否为定值,若是,求出该定值,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A,B,C所对的边分别为a,b,c,且$cosC=\frac{1}{8},C=2A$.
(1)求cosA的值;
(2)若a=4,求c的值.

查看答案和解析>>

同步练习册答案