Èçͼ£¬ËıßÐÎABCDÊÇÕý·½ÐΣ¬ÑÓ³¤CDÖÁE£¬Ê¹µÃDE=CD£¬Èô¶¯µãP´ÓµãA³ö·¢£¬ÑØÕý·½Ðεı߰´ÈçÏ·ÏßÔ˶¯£ºA¡úB¡úC¡úD¡úE¡úA¡úD£¬ÆäÖÐ
AP
=¦Ë
AB
+¦Ì
AE
£¬ÔòÏÂÁÐÅжÏÖУº
¢Ùµ±PΪBCµÄÖеãʱ¦Ë+¦Ì=2£»  
¢ÚÂú×ã¦Ë+¦Ì=1µÄµãPÇ¡ÓÐÈý¸ö£»
¢Û¦Ë+¦ÌµÄ×î´óֵΪ3£»  
¢ÜÈôÂú×ã¦Ë+¦Ì=kµÄµãPÓÐÇÒÖ»ÓÐÁ½¸ö£¬Ôòk¡Ê£¨1£¬3£©£®
ÕýÈ·ÅжϵÄÐòºÅÊÇ
 
£®£¨Çëд³öËùÓÐÕýÈ·ÅжϵÄÐòºÅ£©
¿¼µã£ºÆ½ÃæÏòÁ¿µÄ»ù±¾¶¨Àí¼°ÆäÒâÒå
רÌ⣺ƽÃæÏòÁ¿¼°Ó¦ÓÃ
·ÖÎö£ºÓÉÌâÒ⣬²»·ÁÉèÕý·½Ðεı߳¤Îª1£¬½¨Á¢ÈçͼËùʾµÄ×ø±êϵ£¬ÔòB£¨1£¬0£©£¬E£¨-1£¬1£©£¬¹Ê
AB
=£¨1£¬0£©£¬
AE
=£¨-1£¬1£©£¬ÆäÖÐ
AP
=¦Ë
AB
+¦Ì
AE
=£¨¦Ë-¦Ì£¬¦Ì£©£®
¢Ù£ºµãPΪBCµÄÖе㣬
¦Ë-¦Ì=1
¦Ì=
1
2
£¬½âµÃ¦Ë£¬¦Ì£¬¼´¿ÉÅжϳöÕýÎó£»
¢Ú£ºµãPÓëBÖغϣ¬µãPΪADµÄÖе㣬µãPΪEµã£¬¶¼Âú×ã¦Ë+¦Ì=1£¬¼´¿ÉÅжϳöÕýÎó£»
¢Û£º·ÖÀàÌÖÂÛ£ºµ±P¡ÊABʱ£¬µ±P¡ÊBCʱ£¬µ±P¡ÊCDʱ£¬µ±P¡ÊADʱ£¬µ±P¡ÊEAʱ£¬µ±P¡ÊDEʱ£¬¼´¿ÉµÃ³ö£º¦Ë+¦ÌµÄ·¶Î§£¬¼´¿ÉÅжϳöÕýÎ󣻣®
¢Ü£ºÓÉ¢ÛÖª£¬ÈôÂú×ã¦Ë+¦Ì=kµÄµãPÓÐÇÒÖ»ÓÐÁ½¸ö£¬Ôòk¡Ê[1£¬3]£®¼´¿ÉÅжϳöÕýÎó£®
½â´ð£º ½â£ºÓÉÌâÒ⣬²»·ÁÉèÕý·½Ðεı߳¤Îª1£¬½¨Á¢ÈçͼËùʾµÄ×ø±êϵ£¬
ÔòB£¨1£¬0£©£¬E£¨-1£¬1£©£¬¹Ê
AB
=£¨1£¬0£©£¬
AE
=£¨-1£¬1£©£¬ÆäÖÐ
AP
=¦Ë
AB
+¦Ì
AE
=£¨¦Ë-¦Ì£¬¦Ì£©£®
¶ÔÓÚ¢Ù£º¡ßµãPΪBCµÄÖе㣬
¦Ë-¦Ì=1
¦Ì=
1
2
£¬½âµÃ¦Ë=
3
2
£¬¦Ì=
1
2
£¬¡à¦Ë+=¦Ì=2£¬¹Ê¢ÙÕýÈ·£»
¶ÔÓÚ¢Ú£ºµ±¦Ë=1£¬¦Ì=0ʱ£¬
AP
=£¨1£¬0£©£¬´ËʱµãPÓëBÖغϣ¬Âú×ã¦Ë+¦Ì=1£¬
µ±¦Ë=
1
2
£¬¦Ì=
1
2
ʱ£¬
AP
=£¨0£¬
1
2
£©£¬´ËʱµãPΪADµÄÖе㣬Âú×ã¦Ë+¦Ì=1£¬
Èô¦Ë=0£¬¦Ì=1£¬Ôò
AP
=
AE
£¬´ËʱµãPΪEµã£¬Âú×ã¦Ë+¦Ì=1£¬
¹ÊÂú×ã¦Ë+¦Ì=1µÄµãÓÐÇÒÖ»ÓÐÈý¸ö£¬¹Ê¢ÚÕýÈ·£»
¶ÔÓÚ¢Û£ºµ±P¡ÊABʱ£¬ÓÐ0¡Ü¦Ë-¦Ì¡Ü1£¬¦Ì=0£¬¿ÉµÃ0¡Ü¦Ë¡Ü1£¬¹ÊÓÐ0¡Ü¦Ë+¦Ì¡Ü1£¬
µ±P¡ÊBCʱ£¬ÓЦË-¦Ì=1£¬0¡Ü¦Ì¡Ü1£¬ËùÒÔ0¡Ü¦Ë-1¡Ü1£¬¹Ê1¡Ü¦Ë¡Ü2£¬¹Ê1¡Ü¦Ë+¦Ì¡Ü3£¬
µ±P¡ÊCDʱ£¬ÓÐ0¡Ü¦Ë-¦Ì¡Ü1£¬¦Ì=1£¬ËùÒÔ0¡Ü¦Ë-1¡Ü1£¬¹Ê1¡Ü¦Ë¡Ü2£¬¹Ê2¡Ü¦Ë+¦Ì¡Ü3£¬
µ±P¡ÊADʱ£¬ÓЦË-¦Ì=0£¬0¡Ü¦Ì¡Ü1£¬ËùÒÔ0¡Ü¦Ë¡Ü1£¬¹Ê0¡Ü¦Ë+¦Ì¡Ü2£¬
µ±P¡ÊEAʱ£¬ÓЦË=0£¬0¡Ü¦Ì¡Ü1£¬¹Ê0¡Ü¦Ë+¦Ì¡Ü1£¬
µ±P¡ÊDEʱ£¬ÓÐ-1¡Ü¦Ë-¦Ì¡Ü0£¬¦Ì=1£¬ËùÒÔ0¡Ü¦Ë¡Ü1£¬¹Ê0¡Ü¦Ë+¦Ì¡Ü2£¬
×ÛÉϿɵÃ0¡Ü¦Ë+¦Ì¡Ü3£¬¹ÊCÕýÈ·£®
¶ÔÓڢܣºÓÉ¢ÛÖª£¬ÈôÂú×ã¦Ë+¦Ì=kµÄµãPÓÐÇÒÖ»ÓÐÁ½¸ö£¬Ôòk¡Ê[1£¬3]£®¹Ê¢Ü´íÎó£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û£®
µãÆÀ£º±¾Ì⿼²éÁËÏòÁ¿µÄÏßÐÔÔËËã¡¢ÏòÁ¿×ø±êµÄÀí½âÓëÓ¦Ó㬿¼²éÁË·ÖÀàÌÖÂÛ˼Ïë·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ax2+1£¬g£¨x£©=ln£¨x+1£©
£¨¢ñ£©ÊµÊýaΪºÎֵʱ£¬º¯Êýg£¨x£©ÔÚx=0´¦µÄÇÐÏßÓ뺯Êýf£¨x£©µÄͼÏóÒ²ÏàÇУ»
£¨¢ò£©µ±x¡Ê[0£¬+¡Þ£©Ê±£¬¶¼Óв»µÈʽf£¨x£©+g£¨x£©¡Üx+1³ÉÁ¢£¬ÇóaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÒÑÖªn¡ÊN£¬ÊÔÅжÏg£¨n£©Óëg¡ä£¨0£©+g¡ä£¨1£©+g¡ä£¨2£©+¡­+g¡ä£¨n+1£©µÄ´óС£¬²¢Ö¤Ã÷Ö®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬¡ÏA£¾¡ÏB£¾¡ÏC£¬ÇÒÈý±ßµÄ³¤ÎªÁ¬ÐøµÄ×ÔÈ»Êý£¬ÇÒa=2ccosC£¬ÇósinA£ºsinB£ºsinCµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªf£¨x£©=£¨x-1£©2£¬g£¨x£©=x2-1£¬Ôòf£¨g£¨x£©£©£¨¡¡¡¡£©
A¡¢ÔÚ£¨-2£¬0£©ÄÚµÝÔö
B¡¢ÔÚ£¨0£¬2£©ÄÚµÝÔö
C¡¢ÔÚ£¨-
2
£¬0£©ÄÚµÝÔö
D¡¢ÔÚ£¨0£¬
2
£©ÄÚµÝÔö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÔ²C¹ýµãA£¨a£¬b£©£¬Ô²ÐÄC£¨c£¬0£©£¬ÇÒa2b2+a2+c2-4a-8ab-2c+21=0£¬ÔòÔ²CµÄ±ê×¼·½³ÌΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÇúÏßy=ln£¨x-a£©ÓëÖ±Ïßey=x+1ÏàÇУ¬Ôòa=£¨¡¡¡¡£©
A¡¢1B¡¢eC¡¢-1D¡¢-e

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªf£¨x£©=ln£¨x-cosx+a£©£¬Èô?x0£¾0£¬Ê¹f£¨f£¨x0£©£©=x0£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬AB=AC=a£¬ÒÔBCΪ±ßÏòÍâ×÷Õý¡÷BCD£¬ÇóAD×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬M£¬N·Ö±ðÊÇËÄÃæÌåOABCµÄÀâOA£¬BCµÄÖе㣬µãPÔÚMNÉÏÇÒÂú×ã
MP
=
2
3
MN
£¬Èô
OA
=
a
£¬
OB
=
b
£¬
OC
=
c
£¬ÔòÓë
OP
ÏàµÈµÄÏòÁ¿ÊÇ£¨¡¡¡¡£©
A¡¢
1
3
a
+
1
3
b
+
1
6
c
B¡¢
1
3
a
+
1
6
b
+
1
6
c
C¡¢
1
6
a
+
1
6
b
+
1
3
c
D¡¢
1
6
a
+
1
3
b
+
1
3
c

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸