精英家教网 > 高中数学 > 题目详情
8.如图,已知椭圆的中心在坐标原点,焦点在x轴上,它的一个顶点为A(0,$\sqrt{2}$),且离心率等于$\frac{{\sqrt{3}}}{2}$,过点M(0,2)的直线l与椭圆相交于不同两点P,Q,点N在线段PQ上.
(1)求椭圆的标准方程;
(2)设$\frac{{|\overrightarrow{PM}|}}{{|\overrightarrow{PN}|}}=\frac{{|\overrightarrow{MQ}|}}{{|\overrightarrow{NQ}|}}=λ$,若直线l与y轴不重合,试求λ的取值范围.

分析 (1)设出椭圆方程,利用椭圆的离心率,顶点坐标,转化求解即可.
(2)设P(x1,y1),Q(x2,y2),N(x0,y0),设直线l的方程为y=kx+2,与椭圆方程联立消去y得(1+4k2)x2+16kx+8=0,通过韦达定理,化简$\frac{{|\overrightarrow{PM}|}}{{|\overrightarrow{PN}|}}=\frac{{|\overrightarrow{MQ}|}}{{|\overrightarrow{NQ}|}}$,利用点N在直线y=kx+2上,推出$λ=\frac{{2-{y_1}}}{{{y_1}-1}}=\frac{1}{{{y_1}-1}}-1$,然后求出结果.

解答 解:(1)设椭圆的标准方程是$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,
由于椭圆的一个顶点是$A(0,\sqrt{2})$,故b2=2,根据离心率是$\frac{{\sqrt{3}}}{2}$,得$\frac{c}{a}=\sqrt{\frac{{{a^2}-{b^2}}}{a^2}}=\frac{{\sqrt{3}}}{2}$,解得a2=8,
所以椭圆的标准方程是$\frac{x^2}{8}+\frac{y^2}{2}=1$.
(2)设P(x1,y1),Q(x2,y2),N(x0,y0),
设直线l的方程为y=kx+2,与椭圆方程联立消去y得(1+4k2)x2+16kx+8=0,
根据韦达定理得${x_1}+{x_2}=-\frac{16k}{{1+4{k^2}}}$,${x_1}{x_2}=\frac{8}{{1+4{k^2}}}$,
由$\frac{{|\overrightarrow{PM}|}}{{|\overrightarrow{PN}|}}=\frac{{|\overrightarrow{MQ}|}}{{|\overrightarrow{NQ}|}}$,得$\frac{{0-{x_1}}}{{{x_1}-{x_0}}}=\frac{{0-{x_2}}}{{{x_0}-{x_2}}}$,整理得2x1x2=x0(x1+x2),把上面的等式代入得${x_0}=-\frac{1}{k}$,
又点N在直线y=kx+2上,所以${y_0}=k(-\frac{1}{k})+2=1$,于是有$1<{y_1}<\sqrt{2}$,$λ=\frac{{2-{y_1}}}{{{y_1}-1}}=\frac{1}{{{y_1}-1}}-1$,由$1<{y_1}<\sqrt{2}$,得$\frac{1}{{{y_1}-1}}>\sqrt{2}+1$,所以$λ>\sqrt{2}$.
综上所述,$λ>\sqrt{2}$.

点评 本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数 f(x)=ax-x4,x∈[$\frac{1}{2}$,1],A、B是图象上不同的两点,若直线AB的斜率k总满足 $\frac{1}{2}$≤k≤4,则实数a的值是(  )
A.$\frac{9}{2}$B.$\frac{7}{2}$C.5D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)的定义域是(0,+∞),满足对于任意x,y>0,有 f($\frac{x}{y}$)=f(x)-f(y),且当x>1时,有f(x)>0
(1)求f(1)的值;
(2)判断并证明f(x)在区间(0,+∞)上的单调性;
(4)若f(6)=1,解不等式f(x+3)-f($\frac{1}{3}$)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点P(-2,-2),Q(0,-1),取一点R(2,m),使得PR+PQ最小,那么实数m的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.老师要求同学们做一个三角形,使它的三条高分别为:$\frac{1}{2}$,1,$\frac{2}{5}$,则(  )
A.同学们做不出符合要求的三角形B.能做出一个锐角三角形
C.能做出一个直角三角形D.能做出一个钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=mx-$\frac{m-1+2e}{x}$-lnx,m∈R函数g(x)=$\frac{1}{xcosθ}$+lnx在[1,+∞)上为增函数,且θ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(Ⅰ)求θ的值;
(Ⅱ)当m=0时,求函数f(x)的单调区间和极值;
(Ⅲ)若在[1,e]上至少存在一个x0,使得f(x0)>g(x0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=(x2-2ax)lnx+bx2,a,b∈R.
(1)当a=1,b=-1时,设g(x)=(x-1)2lnx+x,求证:对任意的x>1,g(x)-f(x)>x2+x+e-e2
(2)当b=2时,若对任意x∈[1,+∞),不等式2f(x)>3x2+a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短轴长是长轴长的$\frac{{\sqrt{3}}}{2}$,A是椭圆M的右顶点,B、C在椭圆M上,O是坐标原点,四边形OABC为面积是3的平行四边形.
(1)求椭圆M的方程;
(2)过点(4,0)且不垂直于x轴的直线与椭圆M交于P,Q两点,点Q关于x轴的对称点为E,证明:直线PE与x轴的交点为椭圆M的右焦点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=(k-2)x2+2kx-3.
(Ⅰ)当k=4时,求f(x)在区间(-4,1)上的值域;
(Ⅱ)若函数f(x)在(0,+∞)上至少有一个零点,求实数k的取值范围;
(Ⅲ)若f(x)在区间[1,2]上单调递增,求实数k的取值范围.

查看答案和解析>>

同步练习册答案