精英家教网 > 高中数学 > 题目详情

【题目】设数列的前n项和为,已知为常数).

1)求的值;

2)求数列的通项公式;

3)记集合,若中仅有3个元素,求实数的取值范围.

【答案】(1) (2) ). (3)

【解析】

1由题意列关于方程组,求解方程组得的值2)把1中所求值代入,取另一递推式,作差后可得数列是等比数列,进一步得到通项公式3求出数列的前项和,代入构造函数利用作差法判断函数单调性,由单调性求得实数的取值范围

1)由题意,得

,解得

2)由(1)知,

时,

①-②,得),又

所以数列是首项为,公比为的等比数列.

所以的通项公式为).

3)由,得

,令

因为,所以为递增数列,

,所以即可

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A(﹣10),B10),C01),直线yax+ba0)将ABC分割为面积相等的两部分,则b的取值范围是(  )

A.01B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:

(1)现从去年的消费金额超过3200元的消费者中随机抽取2人,求至少有1位消费者,其去年的消费者金额在的范围内的概率;

(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:

预计去年消费金额在内的消费者今年都将会申请办理普通会员,消费金额在内的消费者都将会申请办理银卡会员,消费金额在内的消费者都将会申请办理金卡会员,消费者在申请办理会员时,需一次性缴清相应等级的消费金额,该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:

方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励:

普通会员中的“幸运之星”每人奖励500元;银卡会员中的“幸运之星”每人奖励600元;金卡会员中的“幸运之星”每人奖励800元.

方案二:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球,若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立)

请你预测哪一种返利活动方案该健身机构的投资较少?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棱长为1的正方体中,点分别在线段上运动(不包括线段端点),且.以下结论:①;②若点分别为线段的中点,则由线确定的平面在正方体上的截面为等边三角形;③四面体的体积的最大值为;④直线与直线的夹角为定值.其中正确的结论为______.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金,保险公司把企业的所有岗位共分为三类工种,从事这三类工种的人数分别为12000,6000,2000,由历史数据统计出三类工种的赔付频率如下表(并以此估计赔付概率):

已知三类工种职工每人每年保费分别为25元、25元、40元,出险后的赔偿金额分别为100万元、100万元、50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.

(1)求保险公司在该业务所或利润的期望值;

(2)现有如下两个方案供企业选择:

方案1:企业不与保险公司合作,职工不交保险,出意外企业自行拿出与保险公司提供的等额赔偿金赔偿付给意外职工,企业开展这项工作的固定支出为每年12万元;

方案2:企业与保险公司合作,企业负责职工保费的70%,职工个人负责保费的30%,出险后赔偿金由保险公司赔付,企业无额外专项开支.

请根据企业成本差异给出选择合适方案的建议.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数,数列,总有

1)求的通项公式;

2)设是数列的前项和,且,求的取值范围;

3)若数列满足:①的子数列(即中每一项都是的项,且按在中的顺序排列);②为无穷等比数列,它的各项和为,这样的数列是否存在?若存在,求出所有符合条件的数列.写出它的通项公式,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与直线交于两点,不与轴垂直,圆.

(1)若点在椭圆上,点在圆上,求的最大值;

(2)若过线段的中点且垂直于的直线过点,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:

经过定点的直线都可以用方程表示;

经过定点的直线都可以用方程表示;

不经过原点的直线都可以用方程表示;

经过任意两个不同的点的直线都可以用方程表示,

其中真命题的个数为(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是菱形,是矩形,平面平面的中点.

(1)求证:∥平面

(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案