分析 (1)先求f(0)=0,再设x<0,由奇函数的性质f(x)=-f(-x),利用x>0时的表达式求出x<0时函数的表达式.
(2)函数f(x)在区间[-1,a-2]上单调递增,可得-1<a-2≤2,即可求实数a的取值范围.
解答 解:(1)∵函数f(x)是定义在R上的奇函数,
∴f(0)=0,且f(-x)=-f(x),
∴f(x)=-f(-x),
设x<0,则-x>0,
∴f(-x)=-x2-4x,
∴f(x)=-f(-x)=-(-x2-4x)=x2+4x,
∴f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≤0}\\{-{x}^{2}+4x,x>0}\end{array}\right.$;
(2)∵函数f(x)在区间[-1,a-2]上单调递增,
∴-1<a-2≤2,
∴1<a≤4.
点评 本题主要考查奇函数的性质求解函数的解析式,关键是利用原点两侧的函数表达式之间的关系解题.
科目:高中数学 来源: 题型:解答题
测试项目 | 测试成绩/分 | ||
甲 | 乙 | 丙 | |
笔试 | 92 | 85 | 95 |
面试 | 85 | 95 | 80 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{3}^{2013}+1}{{3}^{2013}-1}$ | B. | -$\frac{{3}^{2013}+1}{{3}^{2013}-1}$ | ||
C. | $\frac{{3}^{2012}+1}{{3}^{2012}-1}$ | D. | -$\frac{{3}^{2012}+1}{{3}^{2012}-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com