精英家教网 > 高中数学 > 题目详情
已知圆O:x2+y2=1与x轴交于点A和B,在线段AB上取一点D(x,0),作DC⊥AB与圆O的一个交点为C,若线段AD、BD、CD可作为一个锐角三角形的三边长,则x的取值范围为
 
分析:本题考查的是如何判断三角形的形状,由圆O:x2+y2=1与x轴交于点A和B,在线段AB上取一点D(x,0),作DC⊥AB与圆O的一个交点为C,我们可以将线段AD、BD、CD都用变量x表示,再根据判断三角形形状的方法,构造不等式,解不等式即可得到x的取值范围
解答:解:由已知易得A(-1,0),B(1,0),
若在线段AB上取一点D(x,0),作DC⊥AB与圆O的一个交点为C
则-1<x<1,
则AD=x+1,BD=x-1,CD=
1-x2

当x<0时,BD为最大边,
此时若线段AD、BD、CD可作为一个锐角三角形的三边长,
则BD2<AD2+CD2
即:(x-1)2<(x+1)2+(1-x2
解得:-
5
+2<x<0

同理可求:当x>0时,0<x<
5
-2

又∵x=0时,AD=BD=CD=1,也满足要求
综上x的取值范围为(-
5
+2,  
5
-2)

故答案为:(-
5
+2,  
5
-2)
点评:要判断三角形的形状,我们要先判断出三角形的最大边C,如果
①c2<a2+b2,则三角形为锐角三角形;
②c2=a2+b2,则三角形为直角三角形;
③c2>a2+b2,则三角形为钝角三角形;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
2
2
的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知圆o:x2+y2=b2与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
有一个公共点A(0,1),F为椭圆的左焦点,直线AF被圆所截得的弦长为1.
(1)求椭圆方程.
(2)圆o与x轴的两个交点为C、D,B( x0,y0)是椭圆上异于点A的一个动点,在线段CD上是否存在点T(t,0),使|BT|=|AT|,若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=9,定点 A(6,0),直线l:3x-4y-25=0
(1)若P为圆O上动点,求线段PA的中点M的轨迹方程
(2)设E、F分别是圆O和直线l上任意一点,求线段EF的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知圆O:x2+y2=r2,点P(a,b)(ab≠0)是圆O内一点,过点P的圆O的最短弦所在的直线为l1,直线l2的方程为ax+by+r2=0,那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=1,点P在直线x=
3
上,O为坐标原点,若圆O上存在点Q,使∠OPQ=30°,则点P的纵坐标y0的取值范围是(  )

查看答案和解析>>

同步练习册答案