精英家教网 > 高中数学 > 题目详情

抛物线的准线方程为,则实数(   )

A.4                B.               C.2                D.

 

【答案】

B

【解析】

试题分析:根据题意,由于抛物线,g故可知焦点在y轴上,开口向上,因此准线方程为y=-1,那么可知,故选B.

考点:抛物线的性质

点评:解决的关键是确定焦点位置,以及准线方程的表示,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线y2=4mx(m>0)的焦点到双曲线
x2
16
-
y2
9
=l的一条渐近线的距离为3,则此抛物线的准线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线方程为x2=-2y,则该抛物线的准线方程为
2y-1=0
2y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济南一模)若抛物线y2=2px(p>0)的焦点在直线x-2y-2=0上,则该抛物线的准线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•海淀区二模)双曲线C:
x2
2
-
y2
2
=1
的渐近线方程为
y=±x
y=±x
;若双曲线C的右焦点和抛物线y2=2px的焦点相同,则抛物线的准线方程为
x=-2
2
x=-2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)上一点P到抛物线焦点的最短距离为1,则该抛物线的准线方程为
 

查看答案和解析>>

同步练习册答案