精英家教网 > 高中数学 > 题目详情

【题目】如图,在正四棱柱中,已知AB=2,

E、F分别为上的点,且.

(1)求证:BE⊥平面ACF;

(2)求点E到平面ACF的距离.

【答案】(1)见解析(2)

【解析】

分析:(1)为原点,所在直线分别为轴建立空间直角坐标系,写出要用的点的坐标,要证明线与面垂直,只需证明这条直线与平面上的两条直线垂直即可;(2)为平面的一个法向量,向量上的射影长即为到平面的距离,根据点到面的距离公式可得到结论.

详解(1)证明:以D为原点,DADCDD1所在直线分别为xyz轴建立如图所示空间直角坐标系,则D(0,0,0)、A(2,0,0)、B(2,2,0)、C(0,2,0)、D1(0,0,5)、E(0,0,1)、F(2,2,4).

=(-2,2,0)、=(0,2,4)、=(-2,-2,1)、=(-2,0,1).

·=0,·=0,

BEACBEAF,且ACAFA.

BE⊥平面ACF.

(2)(1)知,为平面ACF的一个法向量,

∴点E到平面ACF的距离d.

故点E到平面ACF的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知E,F分别为正方体ABCD﹣A1B1C1D的棱AB,AA1上的点,且AE=AB,AF=AA1 , M,N分别为线段D1E和线段C1F上的点,则与平面ABCD平行的直线MN有(  )
A.1条
B.3条
C.6条
D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)讨论函数的单调性;

(2)记函数的导函数,当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪70元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成5元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如表频数表: 甲公司送餐员送餐单数频数表

送餐单数

38

39

40

41

42

天数

20

40

20

10

10

乙公司送餐员送餐单数频数表

送餐单数

38

39

40

41

42

天数

10

20

20

40

10

(Ⅰ)现从甲公司记录的100天中随机抽取两天,求这两天送餐单数都大于40的概率;
(Ⅱ)若将频率视为概率,回答下列问题:
(i)记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望;
(ii)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,且.

(1)证明:平面平面

(2)若,二面角的大小为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上的最小值为,求的值;

2)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,直线l过点

若直线l被圆所截得的弦长为,求直线l的方程;

若圆P是以为直径的圆,求圆P与圆的公共弦所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+bx2+cx-1,当x=-2时有极值,且在x=-1处的切线的斜率为-3.

(1)求函数f(x)的解析式.

(2)求函数f(x)在区间[-1,2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)

(1)应收集多少位女生样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为该校学生的每周平均体育运动时间与性别有关.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

同步练习册答案