精英家教网 > 高中数学 > 题目详情
19.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=5,则△AOF的面积为$\frac{5}{2}$.

分析 设A(x1,y1)、B(x2,y2),算出抛物线的焦点坐标,从而可设直线AB的方程为y=k(x-1),与抛物线方程联解消去x可得y2-$\frac{4}{k}$y-4=0,利用根与系数的关系算出y1y2=-4.根据|AF|=5利用抛物线的抛物线的定义算出x1=4,可得y1=±4,进而算出|y1-y2|=5,最后利用三角形的面积公式加以计算,即可得到△AOB的面积.

解答 解:根据题意,抛物线y2=4x的焦点为F(1,0).
设直线AB的斜率为k,可得直线AB的方程为y=k(x-1),
由$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=k(x-1)}\end{array}\right.$消去x,得y2-$\frac{4}{k}$y-4=0,
设A(x1,y1)、B(x2,y2),由根与系数的关系可得y1y2=-4.
根据抛物线的定义,得|AF|=x1+$\frac{p}{2}$=x1+1=5,解得x1=4,
代入抛物线方程得:y12=4×4=16,解得y1=±4,
∵当y1=4时,由y1y2=-4得y2=-1;当y1=-4时,由y1y2=-4得y2=1,
∴|y1-y2|=5,即AB两点纵坐标差的绝对值等于5.
因此△AOB的面积为:S=△AOB=S△AOF+S△BOF=$\frac{1}{2}$|OF|•|y1|+$\frac{1}{2}$|OF|•|y2|
=$\frac{1}{2}$|OF|•|y1-y2|=$\frac{1}{2}$×1×5=$\frac{5}{2}$.
故答案为:$\frac{5}{2}$.

点评 本题给出抛物线经过焦点F的弦AB,在已知AF长的情况下求△AOB的面积.着重考查了抛物线定义与标准方程、直线与圆锥曲线位置关系等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知集合A是同时满足下列两个性质的函数f(x)的全体.
①函数f(x)在其定义域上是单调函数;
②f(x)的定义域内存在区间[a,b],使得f(x)在[a,b]上的值域为[$\frac{a}{2},\frac{b}{2}$].
(1)判断f(x)=x3是否属于M,若是,求出所有满足②的区间[a,b],若不是,说明理由;
(2)若是否存在实数t,使得h(x)=$\sqrt{x-1}+t∈M$,若存在,求实数t的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=(m2-m-1)x-5m-1是幂函数,且在区间(0,+∞)上单调递增.
(Ⅰ)求m的值;
(Ⅱ)解不等式f(x-2)>16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0,且直线与圆C交于A,B两点,若点P(1,1)满足2$\overrightarrow{AP}$=$\overrightarrow{PB}$,则直线l的方程为x-y=0或x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设直线l为抛物线y2=2px(p>0)的焦点,且交抛物线于A,B两点,交其准线于C点,已知|AF|=4,$\overrightarrow{CB}$=2$\overrightarrow{BF}$,则p=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示是一个几何体的三视图,则该几何体的体积为 (  )
A.$\frac{64}{3}$B.16C.$\frac{32}{3}$D.48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P处的切线斜率为2.
(1)求a,b的值;
(2)证明:f(x)≤2x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.“莫以宜春远,江山多胜游”,近年来,宜春市在旅游业方面抓品牌创建,推进养生休闲度假旅游产品升级,明月山景区成功创建国家5A级旅游景区填补了赣西片区的空白,某投资人看到宜春旅游发展的大好前景后,打算在宜春投资甲,乙两个旅游项目,根据市场前期调查,甲,乙两个旅游项目五年后可能的最大盈利率分别为100%和80%,可能的最大亏损率分别为40%和20%,投资人计划投资金额不超过5000万,要求确保亏损不超过1200万,问投资人对两个项目各投资多少万元,才能使五年后可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.珠海市板樟山森林公园(又称澳门回归公园)的山顶平台上,有一座百子回归碑.百子回归碑是一座百年澳门简史,记载着近年来澳门的重大历史事件以及有关史地,人文资料等,如中央四数连读为1999-12-20标示澳门回归日,中央靠下有23-50标示澳门面积约为23.50 平方公里.百子回归碑实为一个十阶幻方,是由1 到100 共100 个整数填满100个空格,其横行数字之和与直列数字之和以及对角线数字之和都相等.请问如图2 中对角线上数字(从左上到右下)之和为505.

查看答案和解析>>

同步练习册答案