【题目】对于函数f(x)=sin(2x+ ),下列命题: ①函数图象关于直线x=﹣ 对称;
②函数图象关于点( ,0)对称;
③函数图象可看作是把y=sin2x的图象向左平移个 单位而得到;
④函数图象可看作是把y=sin(x+ )的图象上所有点的横坐标缩短到原来的 倍(纵坐标不变)而得到;其中正确的命题是 .
【答案】②④
【解析】解:当x=﹣ 时,函数f(x)=sin(2x+ )=0,不是最值,故函数图象不关于直线x=﹣ 对称,故①不正确. 因为当x= 时,函数f(x)=sin(2x+ )=0,故点( ,0)是函数图象与x轴的交点,故函数图象关于点( ,0)对称,故②正确.
把y=sin2x的图象向左平移个 单位而得到 y=sin2(x+ )=sin(2x+ ),故③不正确.
把y=sin(x+ )的图象上所有点的横坐标缩短到原来的 倍得到 y=sin(2x+ ),故④正确.
故答案为 ②④.
根据正弦函数的对称轴过顶点得①不正确.
根据点( ,0)是函数图象与x轴的交点,故函数图象关于点( ,0)对称,故②正确.
由于把y=sin2x的图象向左平移个 单位而得到y=sin(2x+ ),故③不正确.
把y=sin(x+ )的图象上所有点的横坐标缩短到原来的 倍得到 y=sin(2x+ ),故④正确.
科目:高中数学 来源: 题型:
【题目】已知椭圆C的方程为+=1,A、B为椭圆C的左、右顶点,P为椭圆C上不同于A、B的动点,直线x=4与直线PA、PB分别交于M、N两点;若D(7,0),则过D、M、N三点的圆必过x轴上不同于点D的定点,其坐标为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图, 中, 是的中点, ,将沿折起,使点到达点.
(1)求证: 平面;
(2)当三棱锥的体积最大时,试问在线段上是否存在一点,使与平面所成的角的正弦值为?若存在,求出点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国庆期间,高速公路堵车现象经常发生.某调查公司为了了解车速,在临川收费站从7座以下小型汽车中按进收费站的先后顺序,每间隔50辆就抽取一辆的抽样方法抽取40辆汽车进行抽样调查,将他们在某段高速公路的车速)分成六段后,得到如图的频率分布直方图.
(1)求这40辆小型汽车车速的众数和中位数的估计值;
(2)若从这40辆车速在的小型汽车中任意抽取2辆,求抽出的2辆车车速都在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问110名不同的大学生是否爱好某项运动,利用列联表,由计算可得
P(K2>k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参照附表,得到的正确结论是( )
A.有99.5%以上的把握认为“爱好该项运动与性别无关”
B.有99.5%以上的把握认为“爱好该项运动与性别有关”
C.在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率都为50%,现采用随机模拟的方法估计该运动员四次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,2,3,4表示命中,5,6,7,8,9表示不命中;再以每四个随机数为一组,代表四次投篮的结果.经随机模拟产生了20组随机数: 9075 9660 1918 9257 2716 9325 8121 4589 5690 6832
4315 2573 3937 9279 5563 4882 7358 1135 1587 4989
据此估计,该运动员四次投篮恰有两次命中的概率为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com