4£®ÒÑÖªÍÖÔ²CµÄ½¹µãÊÇ${F_1}£¨-2\sqrt{2}£¬0£©£¬{F_2}£¨2\sqrt{2}£¬0£©$£¬ÆäÉϵĶ¯µãPÂú×ã$|{P{F_1}}|+|{P{F_2}}|=4\sqrt{3}$£®µãOΪ×ø±êÔ­µã£¬ÍÖÔ²CµÄ϶¥µãΪR£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©Éè¹ýµã£¨0£¬1£©ÇÒбÂÊΪkµÄÖ±Ïßl2½»ÍÖÔ²CÓÚM£¬NÁ½µã£¬ÊÔ̽¾¿£ºÎÞÂÛkÈ¡ºÎֵʱ£¬$\overrightarrow{RM}•\overrightarrow{RN}$ÊÇ·ñºãΪ¶¨Öµ£®ÊÇÇó³ö¶¨Öµ£¬²»ÊÇ˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâÉè³öÍÖÔ²·½³Ì£¬ÓÉÒÑÖªÇóµÃa£¬½áºÏÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ò£©Ð´³öÖ±Ïßl2µÄ·½³Ì£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØϵµÃµ½M£¬NÁ½µãºá×ø±êµÄºÍÓë»ý£¬ÓÉÏòÁ¿ÊýÁ¿»ýµÄ×ø±ê±íʾÇóµÃ$\overrightarrow{RM}•\overrightarrow{RN}$ºãΪ¶¨Öµ£®

½â´ð ½â£º£¨¢ñ£©ÉèÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£®
¡ßÍÖÔ²ÉϵĶ¯µãPÂú×ã$|{P{F_1}}|+|{P{F_2}}|=4\sqrt{3}$£¬
¡à2a=4$\sqrt{3}$£¬a=2$\sqrt{3}$£®
ÓÖc=2$\sqrt{2}$£¬¡àa2=12£¬b2=a2-c2=4£¬
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1£»
£¨¢ò£©Éèl2£ºy=kx+1£¬ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}+3{y}^{2}-12=0}\end{array}\right.$£¬
ÏûÈ¥yµÃ£¨1+3k2£©x2+6kx-9=0£¬
Ó֡ߵ㣨0£¬1£©ÔÚÍÖÔ²CÄÚ£¬¡à¡÷£¾0ºã³ÉÁ¢£®
ÉèM £¨x1£¬kx1+1£©£¬N£¨x2£¬x2+1£©£¬
Ôòx1+x2=-$\frac{6k}{1+3{k}^{2}}$£¬x1x2=-$\frac{9}{1+3{k}^{2}}$£¬
Ò×ÖªR£¨0£¬-2£©£¬$\overrightarrow{RM}$=£¨x1£¬kx1+3£©£¬$\overrightarrow{RN}$=£¨x2£¬kx2+3£©£¬
¡à$\overrightarrow{RM}$•$\overrightarrow{RN}$=x1x2+£¨kx1+3£©£¨kx2+3£©=£¨1+k2£©x1x2+3k£¨x1+x2£©+9
=£¨1+k2£©•£¨-$\frac{9}{1+3{k}^{2}}$£©+3k•£¨-$\frac{6k}{1+3{k}^{2}}$£©+9=0£¬ÓëkÎ޹أ®
ÔòÎÞÂÛkÈ¡ºÎֵʱ£¬$\overrightarrow{RM}•\overrightarrow{RN}$ºãΪ¶¨Öµ0£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÖ±ÏߺÍԲ׶ÇúÏß¼äµÄ¹Øϵ£¬×¢ÒâÔËÓÃÁªÁ¢·½³Ì×飬ÔËÓÃΤ´ï¶¨Àí£¬¿¼²éƽÃæÏòÁ¿ÊýÁ¿»ýµÄ×ø±ê±íʾ£¬»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Ä³¿¼µã2016Äê²Î¼Ó½Ìʦ×ʸñ¿¼ÊÔµÄÈËȺÓÉÁ½²¿·Ö×é³É£¬·Ö±ðΪÔÚÖ°ÈËÔ±ÓëÉç»áÈËÔ±£¬ÏÖÀûÓÃËæ»ú³éÑùµÄ·½·¨³éÈ¡50Ãû²Î¿¼ÈËÔ±Ñо¿ËüÃǵĿ¼ÊԳɼ¨£¬²¢½«¿¼ÊԳɼ¨ºÍƵÊýͳ¼ÆÈçϱíËùʾ£º
×é±ð[65£¬75£©[75£¬85£©[85£¬95£©[95£¬105£©[105£¬115£©[115£¬150£©
ƵÊý341315105
½«ÆµÂÊ×÷Ϊ¸ÅÂÊ£¬½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©ÔÚÕâ50Ãû²Î¿¼ÈËÔ±ÖÐÈÎȡһ룬Çó·ÖÊý²»µÍÓÚ105·ÖµÄ¸ÅÂÊ£»
£¨2£©ÎªÁ˽øÒ»²½Á˽âÕâЩ²Î¿¼ÈËÔ±µÄµÃ·ÖÇé¿ö£¬ÔÙ´Ó·ÖÊýÔÚ[65£¬75£©µÄ²Î¿¼ÈËÔ±A£¬B£¬CÖÐÑ¡³ö2룬´Ó·ÖÊýÔÚ[115£¬150£©ÖеIJο¼ÈËÔ±D£¬E£¬F£¬G£¬HÖÐÑ¡³ö1λ½øÐÐÑо¿£¬ÇóAºÍDͬʱ±»Ñ¡µ½µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÔÚ¡÷ABCÖУ¬|$\overrightarrow{BC}$|=4£¬¡÷ABCµÄÄÚÇÐÔ²ÇÐBCÓÚDµã£¬ÇÒ|$\overrightarrow{BD}$|-|$\overrightarrow{CD}$|=2$\sqrt{2}$£¬Ôò¶¥µãAµÄ¹ì¼£·½³ÌΪ$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1£¨x£¾$\sqrt{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¶¼ÓëÖ±ÏßaÏཻµÄÁ½ÌõÖ±ÏßÈ·¶¨Ò»¸öƽÃæ
B£®Á½ÌõÖ±ÏßÈ·¶¨Ò»¸öƽÃæ
C£®¹ýÒ»ÌõÖ±ÏßµÄƽÃæÓÐÎÞÊý¶à¸ö
D£®Á½¸öÏཻƽÃæµÄ½»ÏßÊÇÒ»ÌõÏ߶Î

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¹Û²ì£º$\sqrt{6}$+$\sqrt{15}$£¼2$\sqrt{11}$£¬$\sqrt{5.5}$+$\sqrt{15.5}$£¼2$\sqrt{11}$£¬$\sqrt{4-\sqrt{2}}$+$\sqrt{17+\sqrt{2}}$£¼2$\sqrt{11}$£¬¡­£¬¶ÔÓÚÈÎÒâµÄÕýʵÊýa£¬b£¬Ê¹$\sqrt{a}$+$\sqrt{b}$£¼2$\sqrt{11}$³ÉÁ¢µÄÒ»¸öÌõ¼þ¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®a+b=22B£®a+b=21C£®ab=20D£®ab=21

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¶¨Òån£¡=1¡Á2¡Á¡­¡Án£¬ÏÂÃæÊÇÇó10£¡µÄ³ÌÐò£¬Ôò_____´¦Ó¦ÌîµÄÌõ¼þÊÇ£¨¡¡¡¡£©
A£®i£¾10B£®i£¾11C£®i£¼=10D£®i£¼=11

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÖ±Ïßl²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\sqrt{3}+tcos¦È\\ y=tsin¦È\end{array}\right.£¨tΪ²ÎÊý£¬0¡Ü¦È£¼¦Ð£©$£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=$\frac{4}{1+{3sin}^{2}¦È}$
£¨1£©Ð´³öÇúÏßCµÄÆÕͨ·½³Ì£»
£¨2£©ÈôF1ΪÇúÏßCµÄ×󽹵㣬ֱÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó|F1A|•|F1B|×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÈçͼËùʾµÄÊýÕóÖУ¬ÓÃA£¨m£¬n£©±íʾµÚmÐеĵÚn¸öÊý£¬ÔòÒÀ´Î¹æÂÉA£¨8£¬2£©Îª£¨¡¡¡¡£©
A£®$\frac{1}{45}$B£®$\frac{1}{86}$C£®$\frac{1}{122}$D£®$\frac{1}{167}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-y-2¡Ü0}&{\;}\\{ax+y¡Ý4}&{\;}\\{x-2y+3¡Ý0}&{\;}\end{array}\right.$£¬Ä¿±êº¯Êýz=2x-3yµÄ×î´óÖµÊÇ2£¬ÔòʵÊýa=£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®1C£®$\frac{3}{2}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸