【题目】已知椭圆的左、右焦点分别为、,且点到椭圆上任意一点的最大距离为3,椭圆的离心率为.
(1)求椭圆的标准方程;
(2)是否存在斜率为的直线与以线段为直径的圆相交于、两点,与椭圆相交于、,且?若存在,求出直线的方程;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】某海产品经销商调查发现,该海产品每售出吨可获利万元,每积压吨则亏损万元.根据往年的数据,得到年需求量的频率分布直方图如图所示,将频率视为概率.
(1)请补齐上的频率分布直方图,并依据该图估计年需求量的平均数;
(2)今年该经销商欲进货吨,以(单位:吨, )表示今年的年需求量,以(单位:万元)表示今年销售的利润,试将表示为的函数解析式;并求今年的年利润不少于万元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线: 的焦点为,过点的直线交抛物线于(位于第一象限)两点.
(1)若直线的斜率为,过点分别作直线的垂线,垂足分别为,求四边形的面积;
(2)若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量分布在内,且销售量的分布频率满足:
(1)求的值并估计销售量的平均数;
(2)若销售量大于等于80,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取6天,再从这6天中随机抽取3天进行统计,求这3天不都来自同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)若曲线在点处的切线与直线垂直,求函数的极值;
(2)设函数.当=时,若区间[1,e]上存在x0,使得,求实数的取值范围.(为自然对数底数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的参数方程为(为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)若过点的直线与交于,两点,与交于,两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,左、右焦点分别为、,过的直线交椭圆于两点.
(1)若以为直径的圆内切于圆,求椭圆的长轴长;
(2)当时,问在轴上是否存在定点,使得为定值?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com