精英家教网 > 高中数学 > 题目详情

(1)已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若数列{an}唯一,a的值;

(2)是否存在两个等比数列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不为0的等差数列?若存在,{an},{bn}的通项公式;若不存在,说明理由.

 

【答案】

(1) a= (2) 不存在,理由见解析

【解析】

:(1)设等比数列{an}的公比为q,

b1=1+a,b2=2+aq,b3=3+aq2,

b1,b2,b3成等比数列,(2+aq)2=(1+a)(3+aq2),

aq2-4aq+3a-1=0,(*)

a>0得Δ=4a2+4a>0,故方程(*)有两个不同的实数根,

再由{an}唯一,知方程(*)必有一根为0,q=0代入方程(*)a=.

(2)假设存在两个等比数列{an},{bn}使b1-a1,b2-a2,b3-a3,b4-a4成公差不为0的等差数列,设等比数列{an}的公比为q1,等比数列{bn}的公比为q2,

b2-a2=b1q2-a1q1,

b3-a3=b1-a1,

b4-a4=b1-a1,

b1-a1,b2-a2,b3-a3,b4-a4成等差数列,

×q2-②得a1(q1-q2)(q1-1) 2=0,

a10q1=q2q1=1.

()q1=q2时由①②得b1=a1q1=q2=1,

这时(b2-a2)-(b1-a1)=0与公差不为0矛盾.

()q1=1,由①②得b1=0q2=1,

这时(b2-a2)-(b1-a1)=0与公差不为0矛盾.

综上所述,不存在两个等比数列{an}{bn}使b1-a1,b2-a2,b3-a3,b4-a4成公差不为0的等差数列.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等比数{an},a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2013项之和S2013=
2007050
2007050
(用数字作答).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知等比数{an},a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2013项之和S2013=______(用数字作答).

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省南京市高淳县湖滨高级中学高二(上)9月月考数学试卷(解析版) 题型:填空题

已知等比数{an},a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2013项之和S2013=    (用数字作答).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州市高一(下)期末数学试卷(解析版) 题型:填空题

已知等比数{an},a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2013项之和S2013=    (用数字作答).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州中学高一(下)期末数学试卷(解析版) 题型:填空题

已知等比数{an},a1=1,a4=8,在an与an+1两项之间依次插入2n-1个正整数,得到数列{bn},即a1,1,a2,2,3,a3,4,5,6,7,a4,8,9,10,11,12,13,14,15,a5,…则数列{bn}的前2013项之和S2013=    (用数字作答).

查看答案和解析>>

同步练习册答案