精英家教网 > 高中数学 > 题目详情

【题目】定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)= ,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是

【答案】(0,2)
【解析】解:∵函数f(x)=x2﹣mx﹣1是区间[﹣1,1]上的平均值函数,
∴关于x的方程x2﹣mx﹣1= 在(﹣1,1)内有实数根.
即x2﹣mx﹣1=﹣m在(﹣1,1)内有实数根.
即x2﹣mx+m﹣1=0,解得x=m﹣1,x=1.
又1(﹣1,1)
∴x=m﹣1必为均值点,
即﹣1<m﹣1<10<m<2.
∴所求实数m的取值范围是(0,2).
故答案为:(0,2)
函数f(x)=x2﹣mx﹣1是区间[﹣1,1]上的平均值函数,故有x2﹣mx﹣1= 在(﹣1,1)内有实数根,求出方程的根,让其在(﹣1,1)内,即可求出实数m的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设α,β是两个不同的平面,m,n是两条不同的直线,有如下两个命题:q:若m⊥α,n⊥β且m∥n,则α∥β;q:若m∥α,n∥β且m∥n,则α∥β.(
A.命题q,p都正确
B.命题p正确,命题q不正确
C.命题q,p都不正确
D.命题q不正确,命题p正确

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C为三角形ABC的三内角,其对应边分别为a,b,c,若有2acosC=2b+c成立.
(1)求A的大小;
(2)若 ,b+c=4,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知球内接四棱锥的高为相交于,球的表面积为,若中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,其前n项和为Sn , {bn}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=anb1+an1b2+…+a1bn , n∈N* , 是否存在实数p,q,r,对于任意n∈N* , 都有Tn=pan+qbn+r,若存在求出p,q,r的值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x>0,y>0,且2x+8y﹣xy=0,求:
(1)xy的最小值;
(2)x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinA,cosA), =(cosB,sinB), =sin2C且A、B、C分别为△ABC的三边a,b,c所对的角.
(1)求角C的大小;
(2)若sinA,sinC,sinB成等比数列,且 =18,求c的值..

查看答案和解析>>

同步练习册答案