精英家教网 > 高中数学 > 题目详情
已知二次函数 f(x)=ax2+bx+c(x∈R),满足f(0)=f(
1
2
)=0
且f(x)的最小值是-
1
8
.设数列{an}的前n项和为Sn,对一切(n∈N*),点(n,Sn)在函数f(x)的图象上.
(1)求数列{an}的通项公式;
(2)通过bn=
sn
n+c
构造一个新的数列{bn},是否存在非零常数c,使得{bn}为等差数列;
(3)令cn=
sn+n
n
,设数列{cn•2cn}的前n项和为Tn,求Tn
分析:(1))由于f(0)=f(
1
2
)=0
,及f(x)的最小值是-
1
8
,利用二次函数图象的对称性可设f(x)=a(x-
1
4
)
2
-
1
8
.又f(0)=0,代入即可解得a,可得f(x),由于点(n,Sn)在函数f(x)的图象上,可得Sn关于n的二次函数.当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1即可得到an
(2)由于bn=
Sn
n+c
=
2n2-n
n+c
,只要取得的c的值使得bn为关于n的一次函数即可.
(3)把Sn代入即可得到Cn,利用“错位相减法”即可得出.
解答:解:(1)∵f(0)=f(
1
2
)=0
,∴f(x)的对称轴为x=
0+
1
2
2
 
=
1
4

又∵f(x)的最小值是-
1
8
,∴二次函数图象的对称性可设f(x)=a(x-
1
4
)
2
-
1
8

又f(0)=0,∴0=
1
16
a-
1
8
,解得a=2,
f(x)=2(x-
1
4
)
2
-
1
8
=2x2-x

∵点(n,Sn)在函数f(x)的图象上,∴Sn=2n2-n
当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1=2n2-n-[2(n-1)2-(n-1)]=4n-3.
当n=1时,上式也成立.
an=4n-3(n∈N*)
(2)∵bn=
Sn
n+c
=
2n2-n
n+c
=
2n(n-
1
2
)
n+c

c=-
1
2
(c≠0)
,即得bn=2n,此时数列{bn}为等差数列,∴存在非零常数C=-
1
2
,使得{bn}为等差数列.
(3)Cn=
Sn+n
n
=
2n2-n+n
n
=2n
,则Cn?2Cn=2n×22n=n×22n+1
Tn=1×23+2×25+…+(n-1)•22n-1+n•22n+1
4Tn=1×25+2×27+…+(n-1)22n+1+n×22n+3
两式相减得:-3
T
 
n
=23+25+…+22n+1-n×22n+3=
23(1-4n)
1-4
-n?22n+3

Tn=
23(1-4n)
9
+
n?22n+3
3
=
(3n-1)22n+3+8
9
点评:本题综合考查了二次函数的图象与性质、数列的通项公式an与Sn之间的关系、等差数列的定义与通项公式及前n项和公式、“错位相减法”即等比数列的前n项和公式等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案