精英家教网 > 高中数学 > 题目详情

【题目】已知函数为奇函数,曲线在点处的切线与直线垂直,导函数的最小值为.

的解析式;

上的单调增区间、极值、最值.

【答案】(1)(2)增区间,极小值、最大值18,最小值.

【解析】

(1)根据函数为奇函数可得再根据导数的几何意义及的最小值可求得,进而得到函数的解析式;(2)求出导数后列表得到函数的单调性、极值等情况,进而得到所求.

(1)∵函数为奇函数,

又函数的最小值为

,且

∵曲线在点处的切线与直线垂直,

(2)(1)

时,的变化情况如下表:

3

0

单调递减

极小值

单调递增

由上表可得,函数上的单调增区间为

时,函数有极小值,且极小值为,无极大值.

∴函数的最大值为,最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC△VAB为等边三角形,AC⊥BCAC=BC=OM分别为ABVA的中点.

1)求证:VB∥平面MOC

2)求证:平面MOC⊥平面VAB

3)求三棱锥V﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数时都取得极值.

(1)求的值与函数的单调区间;

(2)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了制定提升农民年收入、实现2020年脱贫的工作计划,该地扶贫办统计了201950位农民的年收入并制成如下频率分布直方图:

1)根据频率分布直方图,估计50位农民的年平均收入元(单位:千元)(同一组数据用该组数据区间的中点值表示);

2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入近似为样本方差,经计算得,利用该正态分布,求:

i)在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?

ii)为了调研精准扶贫,不落一人的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?

附参考数据:,若随机变量X服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求不等式的解集;

(2)若,且对任意恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处取得极大值或极小值,则称为函数的极值点.设函数abkR.

(1)若x=1处的切线.①当有两个极值点,且满足·=1时,求b的值及a的取值范围;②当函数的图象只有一个交点,求a的值;

(2)若对满足函数的图象总有三个交点P,Q,R”的任意突数k,都有PQ=QR成立,求abk满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.

1)写出年利润(万元)关于年产量(千件)的函数解析式;

2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校高一1000名学生的物理成绩,随机抽查了部分学生的期中考试成绩,将数据整理后绘制成如图所示的频率分布直方图.

1)估计该校高一学生物理成绩不低于80分的人数;

2)若在本次考试中,规定物理成绩在m分以上(包括m分)的为优秀,该校学生物理成绩的优秀率大约为18%,求m的值.

查看答案和解析>>

同步练习册答案