精英家教网 > 高中数学 > 题目详情

设数列{an}的各项均为正数.若对任意的n∈N+,存在k∈N+,使得数学公式=an•an+2k成立,则称数列为“Jk型”数列.
(1)若数列{an}是“J2”型数列,且a2=8,a8=1,求a2n
(2)若数列{an}既是“J3”型数列,又是“J4”型数列,证明:数列{an}是等比数列.

解:(1)∵数列{an}是“J2”型数列,
=an•an+4
∴数列{an}的奇数项、偶数项分别组成等比数列
设偶数项组成的等比数列的公比为q,
∵a2=8,a8=1,∴,∴q=
∴a2n=8×=24-n
(2)由题设知,当n≥8时,an-6,an-3,an,an+3,an+6成等比数列;an-6,an-2,an+2,an+6也成等比数列.
从而当n≥8时,an2=an-3an+3=an-6an+6,(*)且an-6an+6=an-2an+2
所以当n≥8时,an2=an-2an+2,即
于是当n≥9时,an-3,an-1,an+1,an+3成等比数列,从而an-3an+3=an-1an+1,故由(*)式知an2=an-1an+1

当n≥9时,设,当2≤m≤9时,m+6≥8,从而由(*)式知am+62=amam+12
故am+72=am+1am+13,从而
于是
因此对任意n≥2都成立.
因为,所以
于是
故数列{an}为等比数列.
分析:(1)利用数列{an}是“J2”型数列,可得数列{an}的奇数项、偶数项分别组成等比数列,根据a2=8,a8=1,求出数列的公比,即可得到通项;
(2)由题设知,当n≥8时,an-6,an-3,an,an+3,an+6成等比数列;an-6,an-2,an+2,an+6也成等比数列,可得,进而可得对任意n≥2都成立,由此可得数列{an}为等比数列.
点评:本题考查新定义,考查等比数列的证明,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的各项都是正数,且对任意n∈N+,都有a13+a23+a33+…+an3=Sn2,其中Sn为数列{an}的前n项和.
(Ⅰ)求证:an2=2Sn-an
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=3n+(-1)n-1λ•2an(λ为非零整数,n∈N*)试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项都是正数,Sn是其前n项和,且对任意n∈N*都有an2=2Sn-an
(1)求数列{an}的通项公式;
(2)若bn=(2n+1)2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项均为正实数,bn=log2an,若数列{bn}满足b2=0,bn+1=bn+log2p,其中p为正常数,且p≠1.
(1)求数列{an}的通项公式;
(2)是否存在正整数M,使得当n>M时,a1•a4•a7•…•a3n-2>a16恒成立?若存在,求出使结论成立的p的取值范围和相应的M的最小值;若不存在,请说明理由;
(3)若p=2,设数列{cn}对任意的n∈N*,都有c1bn+c2bn-1+c3bn-2+…+cnb1=-2n成立,问数列{cn}是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项均为正数,它的前n项和为Sn,点(an,Sn)在函数y=
1
8
x2+
1
2
x+
1
2
的图象上,数列{bn}的通项公式为bn=
an+1
an
+
an
an+1
,其前n项和为Tn
(1)求an;   
(2)求证:Tn-2n<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)设数列{an}的各项均为正数,其前n项的和为Sn,对于任意正整数m,n,Sm+n=
2a2m(1+S2n)
-1
恒成立.
(1)若a1=1,求a2,a3,a4及数列{an}的通项公式;
(2)若a4=a2(a1+a2+1),求证:数列{an}成等比数列.

查看答案和解析>>

同步练习册答案