A. | EH∥FG | B. | 四边形EFGH是矩形 | ||
C. | Ω是棱柱 | D. | 四边形EFGH可能为梯形 |
分析 在A中,利用反证法能证明FG∥EH;由EH⊥平面A1ABB1,得到EH⊥EF,从而得到四边形EFGH为矩形,故B正确,D错误;将Ω从正面看过去,是一个五棱柱.
解答 解:若FG不平行于EH,则FG与EH相交,交点必然在B1C1上,与EH∥B1C1矛盾,所以FG∥EH,故A正确;
由EH⊥平面A1ABB1,得到EH⊥EF,可以得到四边形EFGH为矩形,故B正确;
将Ω从正面看过去,就知道是一个五棱柱,故C正确;
因为EFGH截去几何体EFGHB1C1后,EH$\underset{∥}{=}$B1C1$\underset{∥}{=}$CF,所以四边形EFGH不可能为梯形,故D错误.
故选:D.
点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | tanα | B. | tan2α | C. | $\frac{1}{3}$tan2α | D. | cotα |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{9}{16}$ | B. | $-\frac{3}{4}$ | C. | $\frac{3}{4}$ | D. | $±\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
x | 1 | 2 | 3 |
f(x) | 3.4 | 2.6 | -3.7 |
A. | (-∞,1) | B. | (1,2) | C. | (2,3) | D. | (3,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com