精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos2(x+
π
12
)
g(x)=1+
1
2
sin2x

(Ⅰ)设x=x0是函数y=f(x)图象的一条对称轴,求g(x0)的值;
(Ⅱ)求函数h(x)=f(x)+g(x)的单调递增区间.
分析:(1)先对函数f(x)根据二倍角公式进行化简,再由x=x0是函数y=f(x)图象的一条对称轴求出x0的值后代入到函数g(x)中,对k分奇偶数进行讨论求值.
(2)将函数f(x)、g(x)的解析式代入到h(x)中化简整理成y=Asin(wx+ρ)+b的形式,得到h(x)=
1
2
sin(2x+
π
3
)+
3
2
,然后令2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
求出x的范围即可.
解答:解:(I)由题设知f(x)=
1
2
[1+cos(2x+
π
6
)]

因为x=x0是函数y=f(x)图象的一条对称轴,所以2x0+
π
6
=kπ,
2x0=kπ-
π
6
(k∈Z).
所以g(x0)=1+
1
2
sin2x0=1+
1
2
sin(kπ-
π
6
)

当k为偶数时,g(x0)=1+
1
2
sin(-
π
6
)=1-
1
4
=
3
4

当k为奇数时,g(x0)=1+
1
2
sin
π
6
=1+
1
4
=
5
4


(II)h(x)=f(x)+g(x)=
1
2
[1+cos(2x+
π
6
)]+1+
1
2
sin2x

=
1
2
[cos(2x+
π
6
)+sin2x]+
3
2
=
1
2
(
3
2
cos2x+
1
2
sin2x)+
3
2

=
1
2
sin(2x+
π
3
)+
3
2

2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,即kπ-
12
≤x≤kπ+
π
12
(k∈Z)时,
函数h(x)=
1
2
sin(2x+
π
3
)+
3
2
是增函数,
故函数h(x)的单调递增区间是[kπ-
12
,kπ+
π
12
]
(k∈Z).
点评:本题主要考查三角函数的基本性质--单调性、对称性.考查二倍角公式的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1

(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C、的对边分别为a、b、c,且c=
3
,f(C)=0,若向量
m
=(1, sinA)
与向量
n
=(2,sinB)
共线,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知函数f(x)=
1,x>0
0,x=0
-1,x<0
,设F(x)=x2•f(x),则F(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(
1
2
)x-1,x≤0
ln(x+1),x>0
,若|f(x)|≥ax,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(c-1)2x,(x≥1)
(4-c)x+3,(x<1)
的单调递增区间为(-∞,+∞),则实数c的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-ax+5,x<1
1+
1
x
,x≥1
在定义域R上单调,则实数a的取值范围为(  )

查看答案和解析>>

同步练习册答案