精英家教网 > 高中数学 > 题目详情

如图,椭圆的左焦点为,过点的直线交椭圆于两点.当直线经过椭圆的一个顶点时,其倾斜角恰为

(Ⅰ)求该椭圆的离心率;

(Ⅱ)设线段的中点为的中垂线与轴和轴分别交于两点,

记△的面积为,△为原点)的面积为,求的取值范围.

 

【答案】

(Ⅰ). (Ⅱ)的取值范围是

【解析】

试题分析:(Ⅰ)解:依题意,当直线经过椭圆的顶点时,其倾斜角为   1分

.                          2分

 代入

解得 .                                    3分

所以椭圆的离心率为 .                     4分

(Ⅱ)解:由(Ⅰ),椭圆的方程可设为.          5分

依题意,直线不能与轴垂直,故设直线的方程为,将其代入

.            7分

.                     8分

因为

所以 .              9分

因为 △∽△

所以           11分

.                13分

所以的取值范围是.                   14分

考点:本题主要考查椭圆的标准方程,椭圆的几何性质,直线与椭圆的位置关系,三角形面积计算。

点评:中档题,求椭圆的标准方程,主要运用了椭圆的几何性质,a,b,c,e的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。对于三角形面积计算问题,注意应用已有垂直关系及弦长公式。本题应用韦达定理,简化了解题过程。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分16分)

如图,椭圆的左焦点为,上顶点为,过点作直线的垂线分别交椭圆、轴于两点.⑴若,求实数的值;

⑵设点的外接圆上的任意一点,

的面积最大时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省“十二校”高三第2次联考文科数学试卷(解析版) 题型:解答题

如图,椭圆的左焦点为,右焦点为,过的直线交椭圆于两点, 的周长为8,且面积最大时,为正三角形

1)求椭圆的方程

2)设动直线与椭圆有且只有一个公共点,且与直线于点,证明:点在以为直径的圆上.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省苏州市高三(上)期末数学试卷(解析版) 题型:解答题

如图,椭圆的左焦点为F,上顶点为A,过点A作直线AF的垂线分别交椭圆、x轴于B,C两点.
(1)若,求实数λ的值;
(2)设点P为△ACF的外接圆上的任意一点,当△PAB的面积最大时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源:2013年上海市崇明县高考数学一模试卷(文科)(解析版) 题型:解答题

如图,椭圆的左焦点为F1,右焦点为F2,过F1的直线交椭圆于A,B两点,△ABF2的周长为8,且△AF1F2面积最大时,△AF1F2为正三角形.
(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:①以PQ为直径的圆与x轴的位置关系?
②在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案