精英家教网 > 高中数学 > 题目详情
3.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=x2+2x,则函数$g(x)=f(x)+\frac{1}{2}x-1$零点的集合为(  )
A.{1,-1,0}B.{-2,2,0}C.$\{2,-\frac{1}{2},\frac{{-5+\sqrt{41}}}{4}\}$D.$\{2,\frac{1}{2},\frac{{-5-\sqrt{41}}}{4}\}$

分析 令x>0,则-x<0,f(-x)=(-x)2-2x=-f(x),可得f(x),又f(0)=0.可得g(x)=$\left\{\begin{array}{l}{-{x}^{2}+\frac{5}{2}x-1,x≥0}\\{{x}^{2}+\frac{5}{2}x-1,x<0}\end{array}\right.$,令g(x)=0,解得x即可得出.

解答 解:令x>0,则-x<0,f(-x)=(-x)2-2x=-f(x),∴f(x)=-x2+2x,又f(0)=0.∴f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$.
∴g(x)=$\left\{\begin{array}{l}{-{x}^{2}+\frac{5}{2}x-1,x≥0}\\{{x}^{2}+\frac{5}{2}x-1,x<0}\end{array}\right.$,
令g(x)=0,解得x=2,或$\frac{1}{2}$,或$\frac{-5-\sqrt{41}}{4}$.
∴函数$g(x)=f(x)+\frac{1}{2}x-1$零点的集合为{2,$\frac{1}{2}$,$\frac{-5-\sqrt{41}}{4}$}.
故选:D.

点评 本题考查了函数奇偶性、函数的零点,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\left\{\begin{array}{l}{x-2,x>0}\\{0,x=0}\\{x+2,x<0}\end{array}\right.$.
(1)求f(x+1)的解析式;
(2)解不等式;2x+f(x+1)≤5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)是定义在R上的偶函数,且x1,x2∈[0,+∞)时,有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,若实数a满足f(log2a)+f(log${\;}_{\frac{1}{2}}$a)≤2f(1),则a的取值范围(  )
A.[1,2]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2}$,2]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定义对于任意两个集合M、N的运算:M?N={x|x∈M,x∈N,x∉M∩N}.设集合A={x|x2-3x+2=0},B={y|y=x2-2x+3,x∈A},则A?B={1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知指数函数y=0.3x,当x∈[0,1]时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知角$(α+\frac{π}{3})$的终边经过点$P(2,\;4\sqrt{3})$,则tanα=$\frac{{\sqrt{3}}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=ax3+bx-5,其中a,b为常数,若f(-3)=7,则f(3)=-17.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的函数y=f(x)满足:①对于任意的x∈R,都有f(x+2)=f(x-2);②函数y=f(x+2)是偶函数;③当x∈(0,2]时,f(x)=ex-$\frac{1}{x}$,设a=f(-5),b=f($\frac{19}{2}$),c=f($\frac{41}{4}$),则a,b,c的大小关系是(  )
A.b<a<cB.c<a<bC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\frac{\sqrt{3-x}}{x+1}$+log3(x+2)的定义域是(-2,-1)∪(-1,3].

查看答案和解析>>

同步练习册答案