精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2
3
sinxcosx-sin2x+
1
2
cos2x+
1
2
,x∈R.
(1)求函数f(x)在[-
π
4
π
2
]上的最值;
(2)若将函数f(x)的图象向右平移
π
4
个单位,再将得到的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到g(x)的图象,已知g(α)=-
6
5
,α∈(
3
11π
6
),求cos(
α
2
-
π
6
)的值.
考点:三角函数中的恒等变换应用,正弦函数的图象,函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:(1)利用倍角公式将函数进行化简,结合三角函数的图象和性质即可求函数f(x)在[-
π
4
π
2
]上的最值;
(2)根据三角函数的图象关系求出g(x)的表达式,利用三角函数的关系式进行求值即可.
解答: 解:(1)f(x)=2
3
sinxcosx-sin2x+
1
2
cos2x+
1
2
=
3
sin2x-
1-cos2x
2
+
1
2
cos2x+
1
2
=
3
sin2x+cos2x=2sin(2x+
π
6
).
∵x∈[-
π
4
π
2
],∴-
π
3
≤2x+
π
6
6

∴当2x+
π
6
=-
π
3
,即x=-
π
4
时,f(x)的最小值为2×(-
3
2
)=-
3

当2x+
π
6
=
π
2
,即x=
π
6
时,f(x)的最大值为2×1=2.
(2)若将函数f(x)的图象向右平移
π
4
个单位,再将得到的图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到g(x)=2sin(x-
π
3
),
由g(α)=2sinx(α-
π
3
)=-
6
5

得sinx(α-
π
3
)=-
3
5

∵α∈(
3
11π
6
),
∴π-α∈(π,
2
),
是cos(α-
π
3
)=-
4
5

π
2
α
2
-
π
6
4

∴cos(
α
2
-
π
6
)=-
1+cos(α-
π
3
)
2
=-
1-
4
5
2
=-
10
10
点评:本题主要考查三角函数的最值的求解,根据倍角公式将函数化简是解决本题的关键,要求熟练三角函数的图象和性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α、β是两个不同的平面,m、n是平面α及平面β之外的两条不同直线,给出四个论断:①m∥n,②α∥β,③m⊥α,④n⊥β.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=
1
2
e2x-1在点A处的切线和曲线g(x)=
1
2
e-2x-1在B点处切线互相垂直,O为坐标原点,且
OA
OB
=0,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-x2-3x+3a
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)对任意的x∈[a,3a](a>0),f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆C的方程为
x2
5
+
y2
m
=1,焦点在x轴上,与直线y=kx+1总有公共点,那么m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直角三角形ACB中,∠C=90°,D为AC上一点,且
AD
=2
DC
,∠ABD=30°,则cos∠ADB=(  )
A、-
2
2
B、-
1
2
C、-
3
2
D、-
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a(x+1)ln(x+1)图象上的点[e2-1,f(e2-1)]处的切线的斜率是3,求:f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(0,1),点P(x,y)为直线y=x-1上的一个动点.
(1)求证:∠APB恒为锐角;
(2)若|
.
PA
|=|
.
PB
|,求向量
PB
+
PA
的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an},已知a1=2,an+1=1-
1
an
(n∈N*),则a2014等于(  )
A、-1
B、-
1
2
C、
1
2
D、2

查看答案和解析>>

同步练习册答案