·ÖÎö £¨1£©ÓÉÍÖÔ²µÄ×󶥵ãA£¨-2£¬0£©£¬Ôòa=2£¬ÓÖe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬Ôòc=$\sqrt{3}$£¬b2=a2-c2=1£¬¼´¿ÉÇóµÃÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Ö±ÏßlµÄ·½³ÌΪy=k£¨x+2£©£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí£¬ÇóµÃDµã×ø±ê£¬ÀûÓÃÖеã×ø±ê¹«Ê½¼´¿ÉÇóµÃP£¬ÓÉ$\overrightarrow{OP}$•$\overrightarrow{EQ}$=0£¬ÔòÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËËãÔò£¨4m+2£©k-n=0ºã³ÉÁ¢£¬¼´¿ÉÇóµÃQµÄ×ø±ê£»
£¨3£©ÓÉOM¡Îl£¬ÔòOMµÄ·½³ÌΪy=kx£¬´úÈëÍÖÔ²·½³Ì£¬ÇóµÃMµãºá×ø±êΪx=¡À$\frac{2}{\sqrt{4{k}^{2}+1}}$£¬$\frac{ØADØ+ØAEØ}{ØOMØ}$=$\frac{\sqrt{1+{k}^{2}}Ø{x}_{D}-{x}_{A}Ø+\sqrt{1+{k}^{2}}Ø{x}_{E}-{x}_{A}Ø}{\sqrt{1+{k}^{2}}Ø{x}_{M}Ø}$=$\sqrt{4{k}^{2}+1}$+$\frac{2}{\sqrt{4{k}^{2}+1}}$¡Ý2$\sqrt{2}$£¬¼´¿ÉÇóµÃ$\frac{|AD|+|AE|}{|OM|}$µÄ×îСֵ£®
½â´ð ½â£º£¨1£©ÓÉÍÖÔ²µÄ×󶥵ãA£¨-2£¬0£©£¬Ôòa=2£¬ÓÖe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬Ôòc=$\sqrt{3}$£¬
ÓÖb2=a2-c2=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©ÓÉÖ±ÏßlµÄ·½³ÌΪy=k£¨x+2£©£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=k£¨x+2£©}\end{array}\right.$£¬ÕûÀíµÃ£º£¨4k2+1£©x2+16k2x+16k2-4=0£¬
ÓÉx=-2ÊÇ·½³ÌµÄ¸ù£¬ÓÉΤ´ï¶¨Àí¿ÉÖª£ºx1x2=$\frac{16{k}^{2}-4}{4{k}^{2}+1}$£¬Ôòx2=$\frac{-8{k}^{2}+2}{4{k}^{2}+1}$£¬
µ±x2=$\frac{-8{k}^{2}+2}{4{k}^{2}+1}$£¬y2=k£¨$\frac{-8{k}^{2}+2}{4{k}^{2}+1}$+2£©=$\frac{4k}{4{k}^{2}+1}$£¬
¡àD£¨$\frac{-8{k}^{2}+2}{4{k}^{2}+1}$£¬$\frac{4k}{4{k}^{2}+1}$£©£¬
ÓÉPΪADµÄÖе㣬
¡àPµã×ø±ê£¨$\frac{-8{k}^{2}}{4{k}^{2}+1}$£¬$\frac{2k}{4{k}^{2}+1}$£©£¬
Ö±ÏßlµÄ·½³ÌΪy=k£¨x+2£©£¬Áîx=0£¬µÃE£¨0£¬2k£©£¬
¼ÙÉè´æÔÚ¶¥µãQ£¨m£¬n£©£¬Ê¹µÃOP¡ÍEQ£¬
Ôò$\overrightarrow{OP}$¡Í$\overrightarrow{EQ}$£¬¼´$\overrightarrow{OP}$•$\overrightarrow{EQ}$=0£¬
$\overrightarrow{OP}$=£¨$\frac{-8{k}^{2}}{4{k}^{2}+1}$£¬$\frac{2k}{4{k}^{2}+1}$£©£¬$\overrightarrow{EQ}$=£¨m£¬n-2k£©£¬
¡à$\frac{-8{k}^{2}}{4{k}^{2}+1}$¡Ám+$\frac{2k}{4{k}^{2}+1}$¡Á£¨n-2k£©=0
¼´£¨4m+2£©k-n=0ºã³ÉÁ¢£¬
¡à$\left\{\begin{array}{l}{4m+2=0}\\{-n=0}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{m=-\frac{1}{2}}\\{n=0}\end{array}\right.$£¬
¡à¶¥µãQµÄ×ø±êΪ£¨-$\frac{1}{2}$£¬0£©£»
£¨3£©ÓÉOM¡Îl£¬ÔòOMµÄ·½³ÌΪy=kx£¬
$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=kx}\end{array}\right.$£¬ÔòMµãºá×ø±êΪx=¡À$\frac{2}{\sqrt{4{k}^{2}+1}}$£¬
OM¡Îl£¬¿ÉÖª$\frac{ØADØ+ØAEØ}{ØOMØ}$=$\frac{\sqrt{1+{k}^{2}}Ø{x}_{D}-{x}_{A}Ø+\sqrt{1+{k}^{2}}Ø{x}_{E}-{x}_{A}Ø}{\sqrt{1+{k}^{2}}Ø{x}_{M}Ø}$£¬
=$\frac{{x}_{D}-2{x}_{A}}{Ø{x}_{M}Ø}$£¬
=$\frac{\frac{-8{k}^{2}+2}{4{k}^{2}+1}+4}{\frac{2}{\sqrt{4{k}^{2}+1}}}$£¬
=$\frac{4{k}^{2}+3}{\sqrt{4{k}^{2}+1}}$£¬
=$\sqrt{4{k}^{2}+1}$+$\frac{2}{\sqrt{4{k}^{2}+1}}$¡Ý2$\sqrt{2}$£¬
µ±ÇÒ½öµ±$\sqrt{4{k}^{2}+1}$=$\frac{2}{\sqrt{4{k}^{2}+1}}$£¬¼´k=¡À$\frac{1}{2}$ʱ£¬È¡µÈºÅ£¬
¡àµ±k=¡À$\frac{1}{2}$ʱ£¬$\frac{ØADØ+ØAEØ}{ØOMØ}$µÄ×îСֵΪ2$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¿¼²éΤ´ï¶¨Àí¼°»ù±¾²»µÈʽÐÔÖʵÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | Ö±Ïß | B£® | ÍÖÔ² | C£® | Ë«ÇúÏß | D£® | Å×ÎïÏß |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 0 | B£® | 1 | C£® | 2 | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 80 | B£® | 76 | C£® | 72 | D£® | 68 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 0 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com