19£®Èçͼ£¬ÔÚƽÃæƽֱ½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$£¬ÔÚ¶¥µãΪA£¨-2£¬0£©£¬¹ýµãA×÷бÂÊΪk£¨k¡Ù0£©µÄÖ±Ïßl½»ÍÖÔ²CÓÚµãD£¬½»yÖáÓÚµãE£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªµãPΪADµÄÖе㣬ÊÇ·ñ´æÔÚ¶¨µãQ£¬¶ÔÓÚÈÎÒâµÄk£¨k¡Ù0£©¶¼ÓÐOP¡ÍEQ£¿Èô´æÔÚ£¬Çó³öµãQµÄ×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©Èô¹ýµãO×÷Ö±ÏßlµÄƽÐÐÏß½»ÍÖÔ²CÓÚµãM£¬Çó$\frac{|AD|+|AE|}{|OM|}$µÄ×îСֵ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄ×󶥵ãA£¨-2£¬0£©£¬Ôòa=2£¬ÓÖe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬Ôòc=$\sqrt{3}$£¬b2=a2-c2=1£¬¼´¿ÉÇóµÃÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Ö±ÏßlµÄ·½³ÌΪy=k£¨x+2£©£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí£¬ÇóµÃDµã×ø±ê£¬ÀûÓÃÖеã×ø±ê¹«Ê½¼´¿ÉÇóµÃP£¬ÓÉ$\overrightarrow{OP}$•$\overrightarrow{EQ}$=0£¬ÔòÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËËãÔò£¨4m+2£©k-n=0ºã³ÉÁ¢£¬¼´¿ÉÇóµÃQµÄ×ø±ê£»
£¨3£©ÓÉOM¡Îl£¬ÔòOMµÄ·½³ÌΪy=kx£¬´úÈëÍÖÔ²·½³Ì£¬ÇóµÃMµãºá×ø±êΪx=¡À$\frac{2}{\sqrt{4{k}^{2}+1}}$£¬$\frac{Ø­ADØ­+Ø­AEØ­}{Ø­OMØ­}$=$\frac{\sqrt{1+{k}^{2}}Ø­{x}_{D}-{x}_{A}Ø­+\sqrt{1+{k}^{2}}Ø­{x}_{E}-{x}_{A}Ø­}{\sqrt{1+{k}^{2}}Ø­{x}_{M}Ø­}$=$\sqrt{4{k}^{2}+1}$+$\frac{2}{\sqrt{4{k}^{2}+1}}$¡Ý2$\sqrt{2}$£¬¼´¿ÉÇóµÃ$\frac{|AD|+|AE|}{|OM|}$µÄ×îСֵ£®

½â´ð ½â£º£¨1£©ÓÉÍÖÔ²µÄ×󶥵ãA£¨-2£¬0£©£¬Ôòa=2£¬ÓÖe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬Ôòc=$\sqrt{3}$£¬
ÓÖb2=a2-c2=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©ÓÉÖ±ÏßlµÄ·½³ÌΪy=k£¨x+2£©£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=k£¨x+2£©}\end{array}\right.$£¬ÕûÀíµÃ£º£¨4k2+1£©x2+16k2x+16k2-4=0£¬
ÓÉx=-2ÊÇ·½³ÌµÄ¸ù£¬ÓÉΤ´ï¶¨Àí¿ÉÖª£ºx1x2=$\frac{16{k}^{2}-4}{4{k}^{2}+1}$£¬Ôòx2=$\frac{-8{k}^{2}+2}{4{k}^{2}+1}$£¬
µ±x2=$\frac{-8{k}^{2}+2}{4{k}^{2}+1}$£¬y2=k£¨$\frac{-8{k}^{2}+2}{4{k}^{2}+1}$+2£©=$\frac{4k}{4{k}^{2}+1}$£¬
¡àD£¨$\frac{-8{k}^{2}+2}{4{k}^{2}+1}$£¬$\frac{4k}{4{k}^{2}+1}$£©£¬
ÓÉPΪADµÄÖе㣬
¡àPµã×ø±ê£¨$\frac{-8{k}^{2}}{4{k}^{2}+1}$£¬$\frac{2k}{4{k}^{2}+1}$£©£¬
Ö±ÏßlµÄ·½³ÌΪy=k£¨x+2£©£¬Áîx=0£¬µÃE£¨0£¬2k£©£¬
¼ÙÉè´æÔÚ¶¥µãQ£¨m£¬n£©£¬Ê¹µÃOP¡ÍEQ£¬
Ôò$\overrightarrow{OP}$¡Í$\overrightarrow{EQ}$£¬¼´$\overrightarrow{OP}$•$\overrightarrow{EQ}$=0£¬
$\overrightarrow{OP}$=£¨$\frac{-8{k}^{2}}{4{k}^{2}+1}$£¬$\frac{2k}{4{k}^{2}+1}$£©£¬$\overrightarrow{EQ}$=£¨m£¬n-2k£©£¬
¡à$\frac{-8{k}^{2}}{4{k}^{2}+1}$¡Ám+$\frac{2k}{4{k}^{2}+1}$¡Á£¨n-2k£©=0
¼´£¨4m+2£©k-n=0ºã³ÉÁ¢£¬
¡à$\left\{\begin{array}{l}{4m+2=0}\\{-n=0}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{m=-\frac{1}{2}}\\{n=0}\end{array}\right.$£¬
¡à¶¥µãQµÄ×ø±êΪ£¨-$\frac{1}{2}$£¬0£©£»
£¨3£©ÓÉOM¡Îl£¬ÔòOMµÄ·½³ÌΪy=kx£¬
$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=kx}\end{array}\right.$£¬ÔòMµãºá×ø±êΪx=¡À$\frac{2}{\sqrt{4{k}^{2}+1}}$£¬
OM¡Îl£¬¿ÉÖª$\frac{Ø­ADØ­+Ø­AEØ­}{Ø­OMØ­}$=$\frac{\sqrt{1+{k}^{2}}Ø­{x}_{D}-{x}_{A}Ø­+\sqrt{1+{k}^{2}}Ø­{x}_{E}-{x}_{A}Ø­}{\sqrt{1+{k}^{2}}Ø­{x}_{M}Ø­}$£¬
=$\frac{{x}_{D}-2{x}_{A}}{Ø­{x}_{M}Ø­}$£¬
=$\frac{\frac{-8{k}^{2}+2}{4{k}^{2}+1}+4}{\frac{2}{\sqrt{4{k}^{2}+1}}}$£¬
=$\frac{4{k}^{2}+3}{\sqrt{4{k}^{2}+1}}$£¬
=$\sqrt{4{k}^{2}+1}$+$\frac{2}{\sqrt{4{k}^{2}+1}}$¡Ý2$\sqrt{2}$£¬
µ±ÇÒ½öµ±$\sqrt{4{k}^{2}+1}$=$\frac{2}{\sqrt{4{k}^{2}+1}}$£¬¼´k=¡À$\frac{1}{2}$ʱ£¬È¡µÈºÅ£¬
¡àµ±k=¡À$\frac{1}{2}$ʱ£¬$\frac{Ø­ADØ­+Ø­AEØ­}{Ø­OMØ­}$µÄ×îСֵΪ2$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¿¼²éΤ´ï¶¨Àí¼°»ù±¾²»µÈʽÐÔÖʵÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¶¯µãPµ½Ö±Ïßx+5=0µÄ¾àÀë¼õÈ¥Ëüµ½M£¨2£¬0£©µÄ¾àÀëµÄ²îµÈÓÚ3£¬ÔòµãPµÄ¹ì¼£ÊÇ£¨¡¡¡¡£©
A£®Ö±ÏßB£®ÍÖÔ²C£®Ë«ÇúÏßD£®Å×ÎïÏß

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚÈý½ÇÐÎABCÖÐÈôB=30¡ã£¬AB=2$\sqrt{3}$£¬AC=2£®ÔòÂú×ãÌõ¼þµÄÈý½ÇÐεĸöÊýÓУ¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÓëË«ÇúÏßC2Óй²Í¬µÄ×óÓÒ½¹µãF1£¬F2£¬Á½ÇúÏßµÄÀëÐÄÂÊÖ®»ýe1•e2=1£¬DÊÇÁ½ÇúÏßÔÚµÚÒ»ÏóÏ޵Ľ»µã£¬ÔòF1D£ºF2D=$\frac{2{a}^{2}}{{b}^{2}}$-1£¨ÓÃa£¬b±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¨µ¥Î»£ºcm£©£¬Ôò¸Ã¼¸ºÎÌåµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©cm2£¨¡¡¡¡£©
A£®80B£®76C£®72D£®68

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªÃüÌâp£ºÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬Èôf£¨x£©ÊÇÆ溯Êý£¬Ôòf£¨0£©=0£¬ÔòËüµÄÔ­ÃüÌ⣬ÄæÃüÌâ¡¢·ñÃüÌâ¡¢ÄæÃüÌâÖУ¬ÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®0B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚ¶àÃæÌåA1C1D1-ABCDÖУ¬Æ½ÃæA1C1D1¡ÎƽÃæABCD£¬AA1¡ÎDD1¡ÎCC1£¬AA1¡ÍƽÃæABCD£¬ËıßÐÎΪ¾ØÐΣ¬AD=1£¬DC=2£¬DD1=3£®
£¨1£©ÒÑÖª$\overrightarrow{{A}_{1}E}$=¦Ë$\overrightarrow{{A}_{1}{C}_{1}}$£¬ÇÒDE¡ÍA1C1£¬ÇóʵÊý¦ËµÄÖµ£»
£¨2£©ÒÑÖªHÊÇƽÃæA1BC1Äڵĵ㣬ÇóDHµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÔÚ¡¶¾ÅÕÂËãÊõ¡··½ÌïÕÂÔ²ÌïÊõ£¨Áõ»Õ×¢£©ÖÐÖ¸³ö£º¡°¸îÖ®ÃÖϸ£¬ËùʧÃÖÉÙ£®¸îÖ®ÓָÒÔÖÁ²»ÄܸÔòÓëÔ²ÖܺÏÌå¶øÎÞËùʧÒÓ£®¡±×¢ÊöÖÐËùÓõĸîÔ²ÊõÊÇÒ»ÖÖÎÞÏÞÓëÓÐÏÞµÄת»¯¹ý³Ì£¬±ÈÈçÔÚ$\sqrt{2+\sqrt{2+\sqrt{2+¡­}}}$ÖС°¡­¡±¼´´ú±íÎÞÏÞ´ÎÖظ´£¬µ«Ô­Ê½È´ÊǸö¶¨Öµx£¬Õâ¿ÉÒÔͨ¹ý·½³Ì$\sqrt{2+x}$=xÈ·¶¨³öÀ´x=2£¬ÀàËƵز»Äѵõ½$\frac{1}{1+\frac{1}{1+¡­}}$=$\frac{\sqrt{5}+1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÈçͼËùʾ£¬ËÄÀâ׶P-ABCDÖУ¬µ×ÃæABCDÊǾØÐΣ¬PA=AD£¬PA¡ÍƽÃæABCD£¬M¡¢N·Ö±ðÊÇAB¡¢PCµÄÖе㣮
£¨1£©ÇóÖ¤£ºMN¡ÎƽÃæPAD£»
£¨2£©ÇóÖ¤£ºÆ½ÃæPMC¡ÍƽÃæPCD£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸