精英家教网 > 高中数学 > 题目详情
17.已知定义在R上的单调递增函数f(x)是奇函数,当x>0时,$f(x)=\sqrt{x}+1$.
(1)求f(0)的值及f(x)的解析式;
(2)若f(k•4x-1)<f(3•4x-2x+1)对任意x∈R恒成立,求实数k的取值范围.

分析 (1)f(x)是R上的奇函数得f(0)=0.
令x<0,则-x>0,f(x)=-f(-x)=-$\sqrt{-x}-1$'由此能求出f(x)的解析式.
(2)利用函数的奇偶性和单调性对不等式进行转化,把恒成立问题转化为最值问题.

解答 解:(1)∵f(x)时R上的奇函数f(-x)=-f(x),∴f(0)=0.
令x<0,则-x>0,f(x)=-f(-x)=-$\sqrt{-x}-1$
f(x)=$\left\{\begin{array}{l}{\sqrt{x}+1,x>0}\\{0,x=0}\\{-\sqrt{-x}-1,x<0}\end{array}\right.$
(2)∵f(x)时R上的奇函数,单调递增函数.
∴f(k•4x-1)<f(3•4x-2x+1)对任意x∈R恒成立?k•4x-1<3•4x-2x+1
令2x=t,t>0,则k•4x-1<3•4x-2x+1?kt2-1<3t2-2t⇒k<$\frac{1}{{t}^{2}}$-$\frac{2}{t}$+3,
$\frac{1}{{t}^{2}}-\frac{2}{t}+3=(\frac{1}{t}-1)^{2}+2≥2$,
∴k<2,即实数k的取值范围为:(-∞,2).

点评 本题考查了函数的解析式的求解,函数不等式恒成立的处理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=ln(2x+a2-4)的定义域、值域都为R,则a取值的集合为{-2,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x2+2ax-b2+4无零点
(1)若a是从-2、-1、0、1、2五个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求函数无零点的概率;
(2)若是从区间[-2,2]任取的一个数,是从区间[0,2]任取的一个数,求函数无零点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若角α的终边经过点P(-1,3),则tanα的值为(  )
A.$-\frac{1}{3}$B.-3C.$-\frac{{\sqrt{10}}}{10}$D.$\frac{{3\sqrt{10}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,半径为2的圆圆心的初始位置坐标为(0,2),圆上一点A坐标为(0,0).圆沿x轴正向滚动,当圆滚动到圆心位于(4,2)时,A点坐标为(4-2sin2,2-2cos2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数);在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=2sinθ;
(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)若射线l:y=kx(x≥0)与曲线C1,C2的交点分别为A,B(A,B异于原点),当斜率$k∈[1,\sqrt{3})$时,求|OA|•|OB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow{m}$=($\sqrt{3}$sinωx,1+cosωx),$\overrightarrow{n}$=(cosωx,1-cosωx),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中ω>0,若f(x)的一条对称轴离最近的对称中心的距离为$\frac{π}{4}$.
(1)求f(x)的对称中心;
(2)若g(x)=f(x)+m在区间[0,$\frac{π}{2}$]上存在两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程x±$\sqrt{3}$y=0,则C1与C2的离心率之积为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$α+β=\frac{2π}{3},α>0,β>0$,当sinα+2sinβ取最大值时α=θ,则cosθ=$\frac{\sqrt{21}}{7}$.

查看答案和解析>>

同步练习册答案