精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知在矩形中,,,平面,且.

1)问当实数在什么范围时,边上能存在点,使得

2)当边上有且仅有一个点使得时,求二面角的余弦值大小.

【答案】12

【解析】

1)建立坐标系,设点,则,,,可得,显然当该方程有非负实数解时,边上才存在点,使得,,即可求得的范围.

2)求平面的一个法向量是和平面的一个法向量是,,即可求得二面角的余弦值.

1)以为坐标原点,分别为轴建立坐标系如图所示:

,,

,,.

设点,则,.

,得.

显然当该方程有非负实数解时,边上才存在点,使得,

故只须.

,故的取值范围为.

2)易见,当时,上仅有一点满足题意,

此时,即的中点,

得:,,.

设平面的一个法向量是,

,,

,,

,取,,,所以.

又平面的一个法向量是.

,

二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为椭圆上的点,是两焦点,若,则的面积是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在点处的切线与直线平行.

(Ⅰ)求实数的值;

(Ⅱ)设

i)若函数上恒成立,求的最大值;

ii)当时,判断函数有几个零点,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2axx2-3ln x,其中a∈R,为常数.

(1)若f(x)在x∈[1,+∞)上是减函数,求实数a的取值范围;

(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,两焦点与短轴的一个端点的连线构成的三角形面积为.

(I)求椭圆的方程;

(II)设与圆相切的直线交椭圆,两点(为坐标原点),的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点与点.

(1)求椭圆的方程;

(2)设直线过定点,且斜率为,若椭圆上存在两点关于直线对称,为坐标原点,求的取值范围及面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱,底面是等边三角形,侧面是矩形,的中点,是棱上的点,.

1)证明:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆1的左右焦点分别为F1F2,过焦点F1的直线交椭圆于AB两点,若ABF2的内切圆的面积为4,设AB两点的坐标分别为Ax1y1),Bx2y2),则|y1y2|值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,点在椭圆上,椭圆的离心率是.

(1)求椭圆的标准方程;

(2)设点为椭圆长轴的左端点,为椭圆上异于椭圆长轴端点的两点,记直线斜率分别为,若,请判断直线是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.

查看答案和解析>>

同步练习册答案