精英家教网 > 高中数学 > 题目详情
已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61

(1)求
a
b
的值;
(2)求
a
b
的夹角θ;
(3)求|
a
+
b
|
分析:(1)利用向量的运算律:平方差公式将等式展开求出
a
b

(2)利用向量的数量积公式求出两向量的夹角余弦,进一步求出夹角.
(3)利用向量模的平方等于向量的平方,再利用向量的完全平方公式展开求出模.
解答:解:(1)由(2
a
-3
b
)•(2
a
+
b
)=61
a
b
=
1
4
(4
a
2
-3
b
2
-61)=
1
4
(4×16-3×9-61)=-6

(2)设
a
b
的夹角为θ,则cosθ=
a
b
|
a
||
b
|
=
-6
4×3
=-
1
2

又0°≤θ≤180°∴θ=120°
(3)|
a
+
b
|=
(
a
+
b
)
2
=
a
2
+2
a
b
+
b
2
=
16-12+9
=
13
点评:本题考查向量的运算律、利用向量的数量积求向量的夹角、利用向量模的性质求模.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知|
a
|=4
|
b
|=
3
a
b
=6
,求
(1)(
a
-
b
)•
b

(2)求|
a
+
b
|

(提示:|
a
|2=
a
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=4,b=2,且焦点在x轴上的椭圆标准方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,已知a=4,∠B=45°,若解此三角形时有且只有唯一解,则b的值应满足
b>4或b=2
2
b>4或b=2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61

求(1)
a
b
的夹角

(2)|
a
+
b
|的值

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61.
(1)求
a
b
的夹角为θ;
(2)求|
a
+
b
|;
(3)若
AB
=
a
AC
=
b
,作三角形ABC,求△ABC的面积.

查看答案和解析>>

同步练习册答案