【题目】已知函数(其中为常数)
(1)求的单调增区间;
(2)若时,的最大值为,求的值;
(3)求取最大值时的取值集合.
【答案】(1).(2)a=1.(3){x|x}.
【解析】
(1)令 2kπ2x2kπ,k∈z,求出x的范围,即可求出f(x)的单调增区间.
(2)根据x的范围求出2x的范围,即可求得sin(2x)的范围,根据f(x)的最大值为2+a+1=4,求出a的值.
(3)由相位的终边落在y轴正半轴上求得使f(x)取最大值时x的取值集合.
(1)令 2kπ2x2kπ,k∈z,可得 kπx≤kπ,k∈z,
故函数的增区间为:.
(2)当x∈[0,]时,2x,sin(2x)≤1,
故f(x)的最大值为2+a+1=4,解得a=1.
(3)当2x,即x时,f(x)取最大值,
∴使f(x)取最大值时x的取值集合为{x|x}.
科目:高中数学 来源: 题型:
【题目】编号分别为的16名篮球运动员在某次训练比赛中的得分记录如下:
运动员编号 | ||||||||
得分 | 15 | 35 | 21 | 28 | 25 | 36 | 18 | 34 |
运动员编号 | ||||||||
得分 | 17 | 26 | 25 | 33 | 22 | 12 | 31 | 38 |
(1)将得分在对应区间内的人数填入相应的空格:
区间 | [10,20) | [20,30) | [30,40] |
人数 |
(2)从得分在区间[20,30)内的运动员中随机抽取2人.
(ⅰ)用运动员编号列出所有可能的抽取结果;
(ⅱ)求这2人得分之和大于50的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,焦点在轴上的椭圆经过点,其中为椭圆的离心率.过点作斜率为的直线交椭圆于两点(在轴下方).
(1)求椭圆的方程;
(2)过原点且平行于的直线交椭圆于点, ,求的值;
(3)记直线与轴的交点为.若,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在实数集中,定义两个实数、的运算法则△如下:若,则,若,则.
(1)请分别计算和的值;
(2)对于实数,判断是否恒成立,并说明理由;
(3)求函数的解析式,其中,并求函数的最值.(符号“”表示相乘)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①存在实数x,使得sin x+cos x=2;
②函数y=cos是奇函数;
③若角α,β是第一象限角,且α<β,则tan α<tan β;
④函数y=sin的图象关于点(,0)成中心对称.
⑤直线x=是函数y=sin图象的一条对称轴;
其中正确的命题是( ).
A.②④B.①③C.①④D.②⑤
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为()件.当时,年销售总收人为()万元;当时,年销售总收人为万元.记该工厂生产并销售这种产品所得的年利润为万元.(年利润=年销售总收入一年总投资)
(1)求(万元)与(件)的函数关系式;
(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为保护环境,某单位采用新工艺,把二氧化碳转化为一种可利用的化工产品。已知该单位每月的处理量最多不超过300吨,月处理成本(元)与月处理量(吨)之间的函数关系式可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为300元。
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)要保证该单位每月不亏损,则每月处理量应控制在什么范围?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com