【题目】已知二次函数的对称轴为,.
(1)求函数的最小值及取得最小值时的值;
(2)试确定的取值范围,使至少有一个实根;
(3)若,存在实数,对任意,使恒成立,求实数的取值范围.
【答案】(1),此时;(2)的取值范围为;(3)实数的取值范围为.
【解析】
试题分析:(1)利用基本不等式易得,此时.(2)至少有一个实根,即与的图象在上至少有一个交点,由题意,可得,,则需即可;(3)由题意,可得,则,
由已知存在实数,对任意,使恒成立.即.令∴,转化为存在,使成立.令,的对称轴为,分类讨论,即可得到实数的取值范围
试题解析:(1)∵,∴,
∴,当且仅当,即时“=”成立,即,此时.
(2)的对称轴为,∴,∴,
至少有一个实根,∴至少有一个实根,
即与的图象在上至少有一个交点,
,∴,,
∴,∴,∴的取值范围为.
(3),∴,
由已知存在实数,对任意,使恒成立.
∴.
令,∴,即,
转化为存在,使成立.
令,∴的对称轴为,
∵,∴.
①当,即时,
,
∴,∴.
②当,即时,
,
∴,∴,∴.
综上,实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙长为米(2).
⑴用表示墙的长;
⑵假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元,请将墙壁的总造价(元)表示为(米)的函数;
⑶当为何值时,墙壁的总造价最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为方便市民休闲观光,市政府计划在半径为200米,圆心角为的扇形广场内(如图所示),沿边界修建观光道路,其中分别在线段上,且两点间距离为定长米.
(1)当时,求观光道段的长度;
(2)为提高观光效果,应尽量增加观光道路总长度,试确定图中两点的位置,使观光道路总长度达到最长?并求出总长度的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建设一仓库,设,并在公路北侧建造边长为的正方形无顶中转站CDEF(其中EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且.
(1)求关于的函数解析式,并求出定义域;
(2)如果中转站四堵围墙造价为10万元/km,两条道路造价为30万元/km,问:取何值时,该公司建设中转站围墙和两条道路总造价M最低.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(必须列式,不能只写答案,答案用数字表示)有4个不同的球,四个不同的盒子,把球全部放入盒内.
(1)求共有多少种放法;
(2)求恰有一个盒子不放球,有多少种放法;
(3)求恰有两个盒内不放球,有多少种放法;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点E,F分别是PC,BD的中点。
(1)求证:EF∥平面PAD;
(2)求证:平面PAD⊥平面PCD
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com