精英家教网 > 高中数学 > 题目详情
10.类比实数的运算性质猜想复数的运算性质:
①“mn=nm”类比得到“z1z2=z2z1”;
②“|x|=1⇒x=±1”类比得到“|z|=1⇒z=±1”;
③“|m•n|=|m|•|n|”类比得到“|z1z2|=|z1||z2|”;
④“|x|2=x2”类比得到“|z|2=z2”;
以上的式子中,类比得到的结论正确的个数是(  )
A.4B.3C.2D.1

分析 对四个命题分别进行判断,即可得出结论.

解答 解:①“mn=nm”类比得到“z1z2=z2z1”,满足交换律,正确;
②“|x|=1⇒x=±1”类比得到“|z|=1⇒z=±1”,不正确,例如z=i;
③“|m•n|=|m|•|n|”类比得到“|z1z2|=|z1||z2|”,正确;
④“|由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2,这两个长度的求法不是通过类比得到的.故不正确,
故选:C.

点评 本题考查类比推理,是一个观察几个结论是不是通过类比得到,本题解题的关键在于对于所给的结论的理解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin2ωx+$\sqrt{3}$sinωx•sin(ωx+$\frac{π}{2}$)(其中ω>0)的最小正周期为$\frac{π}{2}$,
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在区间[$\frac{π}{8}$,$\frac{π}{4}$]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的焦距为2,且过椭圆右焦点F2与上顶点的直线l1与圆O:x2+y2=$\frac{1}{2}$相切.
(1)求椭圆E的方程;
(2)是否存在直线l2,满足l2∥l1,并且l2与椭圆E交于A、B两点,以AB为直径的圆与y轴相切,若存在,请求出l2的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|lnx|-k有两个不同的零点a,b,则代数式|$\frac{{a}^{2}+{b}^{2}+2}{a-b}$|的最小值是(  )
A.8$\sqrt{2}$B.8C.4$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求$\frac{2π}{3}$的正弦、余弦和正切值(画图);
(2)角α的终边经过点P(-3,-4),求角α的正弦、余弦和正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面上,Rt△ABC有勾股定理(即$∠C=\frac{π}{2}$,则有c2=a2+b2),类比到空间中,已知三棱锥P-DEF中,∠PDF=$∠PDE=∠EDF=\frac{π}{2}$,用S1,S2,S3,S分别表示△PDF,△PDE,△EDF,△PEF的面积,则有结论:S2=S12+S22+S32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=$\sqrt{3}$cos($\frac{π}{3}$x+$\frac{π}{2}$),若对任意x∈R都有f(x1)≥f(x)≥f(x2)成立,则|x1-x2|的最小值为(  )
A.6B.3C.$\frac{3}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从6件正品与3件次品中任取3件,观察正品件数与次品件数,则下列事件既是互斥事件又是对立事件的是(  )
A.“恰好有1件次品”和“恰好有2件次品”
B.“至少有1件次品”和“全是次品”
C.“至少有1件正品”和“至多有1件次品”
D.“至少有2件次品”和“至多有1件次品”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}为等比数列,数列{bn}满足bn=na1+(n-1)a2+…+2an-1+an,n∈N*,已知b1=m,b2=$\frac{3m}{2}$,其中m≠0.
(1)求数列{an}的首项和公比;
(2)当m=9时,求bn
(3)设Sn为数列{an}的前n项和,若对于任意的正整数n,都有Sn∈[2,6],求实数m的取值范围.

查看答案和解析>>

同步练习册答案