精英家教网 > 高中数学 > 题目详情
16.已知命题p:?x∈R,ax2+2x+a≥0;命题q:a2-2a-3≤0,若命题p∧q为真命题,求a的取值范围.

分析 分别求出p,q为真时的a的范围,取交集即可.

解答 解:关于命题p:?x∈R,ax2+2x+a≥0,
则$\left\{\begin{array}{l}{a>0}\\{△=4-{4a}^{2}≤0}\end{array}\right.$,解得:a>1;
关于命题q:a2-2a-3≤0,
解得:-1≤a≤3,
若命题p∧q为真命题,
则p,q均为真命题,
故a的取值范围是(1,3].

点评 本题考查了二次函数的性质,考查复合命题的判断,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在正方体ABCDD一A1B1C1D1中,点E为线段C1D1上一点,且满足$\frac{{D}_{1}E}{E{C}_{1}}$=$\sqrt{3}$+1,则直线AB1与直线CE所成的角的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C所对边分别为a,b,c,且$c=4\sqrt{2}$,B=45°,面积S=2,则a=1;b=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,平行四边形ABCD中,AB=2AD=2,∠BAD=60°,E为DC的中点,那么$\overrightarrow{AC}$与$\overrightarrow{EB}$所成角的余弦值为(  )
A.$\frac{\sqrt{7}}{7}$B.-$\frac{\sqrt{7}}{7}$C.$\frac{\sqrt{7}}{14}$D.-$\frac{\sqrt{7}}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=|x-a|+|x|.
(Ⅰ)若a=1,解不等式f(x)>2;
(Ⅱ)若存在x∈R,使得不等式f(x)$≤\frac{{t}^{2}+3}{t+1}$对任意t>-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足:a1=$\frac{1}{2}$,an+1-an=p•3n-1-nq,n∈N*,p,q∈R.
(1)若q=0,且数列{an}为等比数列,求p的值;
(2)若p=1,且a4为数列{an}的最小项,求q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知定义在R上的二次函数f(x)的图象过原点,且满足f(x+1)-f(x)=2x+2,函数g(x)=ax(a>0,a≠1).
(1)求f(x)的解析式;
(2)设h(x)=-f(x)+bx,当a=2时,若对任意x∈[1,2],都存在x1,x2∈[1,2],使得h(x)≤h(x1),g(x)≤g(x2),且h(x1)=g(x2),求实数b的值;
(3)若关于x的方程f(x)=g(2x)恰有一实数解x0,且x0∈($\frac{1}{4}$,$\frac{1}{2}$),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列命题,其中正确的命题个数是(  )
①已知a>0,b>0,则$\frac{2ab}{a+b}$≤$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$;
②已知a>0,b>0,c>0,则a+b+c≥$\sqrt{ab}$+$\sqrt{bc}$$+\sqrt{ac}$;
③已知x>0,则函数f(x)=$\frac{{x}^{2}+1}{{x}^{2}-x+1}$的最大值为2;
④若x>0,则ln(1+x)>$\frac{x}{1+x}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$=(1,2,3),$\overrightarrow{b}$=(x,x2+y-2,y)并且$\overrightarrow{a}$,$\overrightarrow{b}$同向,则x,y的值为$\left\{\begin{array}{l}{x=2}\\{y=6}\end{array}\right.$.

查看答案和解析>>

同步练习册答案