精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°,且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直底面ABCD.

(1)若G为AD边的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB;
(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.
(1)见解析   (2)见解析
(3)当F为PC的中点时,满足平面DEF⊥平面ABCD.见解析
(1)证明:∵在菱形ABCD中,∠DAB=60°,
G为AD的中点,得BG⊥AD.

又平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,∴BG⊥平面PAD.
(2)证明:连结PG,因为△PAD为正三角形,G为AD的中点,得PG⊥AD.
由(1)知BG⊥AD,
∵PG∩BG=G,PG?平面PGB,BG?平面PGB
∴AD⊥平面PGB.
∵PB?平面PGB,∴AD⊥PB.
(3)解:当F为PC的中点时,满足平面DEF⊥平面ABCD.
证明如下:取PC的中点F,连结DE,EF,DF,则在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE,而FE?平面DEF,DE?平面DEF,FE∩DE=E,∴平面DEF∥平面PGB.
由(2)可知,PG⊥平面ABCD,而PG?平面PGB,∴平面PGB⊥平面ABCD,∴平面DEF⊥平面ABCD.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1底面△ABC中,CA=CB=1,
∠BCA=90°,棱AA1=2,M是A1B1的中点.
(1)求cos()的值;
(2)求证:A1B⊥C1M.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,底面为矩形,分别为的中点.
(1) 求证:
(2) 求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90,BC=,求二面角S-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正三棱柱ABC-A1B1C1的底面边长为8,侧棱长为6,D为AC中点。

(1)求证:直线AB1∥平面C1DB;
(2)求异面直线AB1与BC1所成角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱锥中,分别是中点.

(1)求证:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱柱中,底面是等腰梯形,是线段的中点.

(Ⅰ)求证:
(Ⅱ)若垂直于平面,求平面和平面所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同直线,是两个不同的平面,给出下列命题:
①若,则;②若,则;③若,则;④若,则,其中正确的命题是(   )
A.①②B.②③C.③④D.①③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在下列关于直线与平面的命题中,正确的是(      )
A.若,则B.若,则
C.若,则D.若,且,则

查看答案和解析>>

同步练习册答案