【题目】在三棱台中,是等边三角形,二面角的平面角为,.
(I)求证:;
(II)求直线与平面所成角的正弦值.
【答案】(Ⅰ)见证明;(Ⅱ)
【解析】
(I)先由线面垂直的判定定理证明平面,进而可得;
(II)可以在几何体中作出直线与平面所成的角,解三角形即可;也可用向量的方法建立适当的坐标系,求出直线的方向向量以及平面的法向量,根据向量夹角的余弦值确定线面角的正弦值.
(I)证明:设,与交于点,取棱的中点,连结.
因,,
故.
又是棱的中点,
故.
同理
又平面,且,
因此平面,
又平面,
所以;
(II)方法一:
作,垂足为.
因平面,
故平面,
从而为直线与平面所成的角.
不妨设,则,,
所以.
方法二:如图,以为原点建立空间直角坐标系,
由(I),为二面角的平面角,则,
设,,则点 , , ,.
设为平面,即平面的一个法向量,
由 ,得,
令,则,即.
.
设是直线与平面所成的角,
则.
科目:高中数学 来源: 题型:
【题目】奥运会排球预选赛有支球队参加,其中每两队比赛一场,每场比赛必决出胜负。如果其中有支球队满足:胜,胜,胜,胜,则称这支球队组成一个“阶连环套”。证明:若全部支球队组成一个 阶连环套,则对于每个及每支球队,必与另外某些球队组成一个阶连环套。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着手机的发展,“微信”逐渐成为人们支付购物的一种形式.某机构对“使用微信支付”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信支付”赞成人数如下表.
年龄(单位:岁) |
|
| , | , | , | |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99%
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(2)若从年龄在的被调查人中按照赞成与不赞成分层抽样,抽样人数分别3人与2人,现对抽样的5人进行追踪调查,在5人中抽取3人做专访,求3人中不赞成使用微信支付的人数的分布列和期望值.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知钝角△ABC中,∠B-∠C=90°,∠C=θ,其外接圆⊙O的半径为R.AD是⊙O的一条直径,过点D作⊙O的切线与BC的延长线交于H,过点D作BA的平行线交AC的延长线于E,交过D、O、H的圆于G,联结GH、EH.求△EGH的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高二年级抽取了名男生和名女生的该学科成绩,得到如图所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定分以上为优分(含分).
(1)(i)请根据图示,将2×2列联表补充完整;
优分 | 非优分 | 总计 | |
男生 | |||
女生 | |||
总计 | 50 |
(ii)据列联表判断,能否在犯错误概率不超过的前提下认为“学科成绩与性别有关”?
(2)将频率视作概率,从高二年级该学科成绩中任意抽取名学生的成绩,求成绩为优分人数的分布列与数学期望.
参考公式:.
参考数据:
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线的参数方程为,(为参数),点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)试判断点是否在直线上,并说明理由;
(2)设直线与曲线交于点,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是___(请填写所有正确的命题序号).
①命题“若,则”的否命题为:“若,则”;
②命题“若,则”的逆否命题为真命题;
③条件,条件,则是的充分不必要条件;
④已知时,,若是锐角三角形,则.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋内有大小完全相同的个黑球和个白球,从中不放回地每次任取个小球,直至取到白球后停止取球,则( )
A.抽取次后停止取球的概率为
B.停止取球时,取出的白球个数不少于黑球的概率为
C.取球次数的期望为
D.取球次数的方差为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com