精英家教网 > 高中数学 > 题目详情
9.若角α和角β的终边关于y轴对称,则必有(  )
A.α+β=90°B.α+β=k×90°+360°,k∈Z
C.α+β=k×360°,k∈ZD.α+β=(2k+1)•180°,k∈Z

分析 首先讨论当α、β为(0°,360°]内的角时,找到它们的一个关系式,再结合终边相同角的集合,将此关系式进行推广即可得到所求答案.

解答 解:先考虑α、β为(0°,360°]内的角时,
若角α和角β的终边关于y轴对称,则β=180°-α,可得α+β=π
若α、β有一个不在区间(0°,360°]内时,
根据终边相同角的集合,得β=180°-α+k360°,k∈Z
整理得:α+β=(2k+1)•180°,k∈Z
故选:D.

点评 本题给出两个角的终边关于y轴对称,求两个角满足的关系式,着重考查了象限角、轴线角和终边相同的角等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某楼盘开展套餐促销优惠活动,优惠方案如下:选择套餐一的客户可获得优惠2万元,选择套餐二的客户可获得优惠5万元,选择套餐三的客户可获得优惠3万元.根据以往的统计结果绘出参与活动的统计图如图所示,现将频率视为概率.
(1)求某两客户选择同一套餐的概率;
(2)若用随机变量ξ表示某两客户所获优惠金额的总和,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:$\root{3}{(\sqrt{\frac{1}{9}}-\sqrt{\frac{2}{9}})^{3}}$•(3$\sqrt{2}$+3)+$\frac{(\sqrt{3})^{4}-(\sqrt{2})^{4}}{(\sqrt{3}-\sqrt{2})^{0}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.分别用角度制、弧度制下的弧长公式,计算半径为1m的圆中,60°的圆心角所对的弧的长度 (可用计算器).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若loga$\frac{3}{4}$<0,则a的取值范围为(  )
A.0<a<1B.a>1C.0<a<$\frac{3}{4}$D.$\frac{3}{4}$<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若对任意x∈(0,1),不等式$\frac{x-m}{lnx}$>$\sqrt{x}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a-1-a=1,求$\frac{{a}^{2}+{a}^{-2}-2}{{a}^{4}-{a}^{-4}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A,B,C的对边分别为a,b,c,C=2A,且a,b,c成公差为1的等差数列,
(1)求a的值;
(2)求sin(2A+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an},a1=$\frac{{a}_{2}}{2}$=1且an+an+1=an+2(?n∈N*),Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$.求证:存在正整数M,使得对任意的n>M都有2<Sn<3(n∈N*).

查看答案和解析>>

同步练习册答案