精英家教网 > 高中数学 > 题目详情

【题目】求证:对任何a>0,b>0,c>0,都

【答案】见解析.

【解析】

注意,这是以a,b为边长且夹角为60°的三角形的第三边的边长.b,c为边长且夹角为60°的三角形的第三边的边长.a,c为边长且夹角为120°的三角形的第三边的边长.于是可将a,b,c三者归结到三角形中,并从中证得不等式. 注意,这是以a,b为边长且夹角为60°的三角形的第三边的边长.b,c为边长且夹角为60°的三角形的第三边的边长.a,c为边长且夹角为120°的三角形的第三边的边长.于是可将a,b,c三者归结到三角形中,并从中证得不等式.

证明构造平面图形如图所示,其中OA=a,OB=b,OC=c,∠AOB=BOC=60°.

由余弦定理,得

因为AB+BCAC,所以有

其中等号成立的充要条件是AB+BC=AC,即A,B,C在同一条直线上,此时SAOC=SAOB+SBOC,

120°60°60°,

ac=ab+bc.

两边同除以abc,

即等号成立的充要条件

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题10分)选修4—4:坐标系与参数方程

已知曲线C1的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ

)把C1的参数方程化为极坐标方程;

)求C1C2交点的极坐标(ρ≥0,0≤θ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交C于A,B两点,交x轴于点D,B到x轴的距离比|BF|小1.
(Ⅰ)求C的方程;
(Ⅱ)若SBOF=SAOD , 求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 (a0+a1x+a2x2+…+anxn)dx=x(x+1)n , 则a1+a2+…+an=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(﹣1,0),B(1,0), = + ,| |+| |=4
(1)求P的轨迹E
(2)过轨迹E上任意一点P作圆O:x2+y2=3的切线l1 , l2 , 设直线OP,l1 , l2的斜率分别是k0 , k1 , k2 , 试问在三个斜率都存在且不为0的条件下, + )是否是定值,请说明理由,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线G:y2=2px(p>0)焦点F的直线l与抛物线G交于M、N两点(M在x轴上方),满足 ,则以M为圆心且与抛物线准线相切的圆的标准方程为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年3月智能共享单车项目正式登陆某市,两种车型“小绿车”、“小黄车”采用分时段计费的方式,“小绿车”每30分钟收费不足30分钟的部分按30分钟计算;“小黄车”每30分钟收费1元不足30分钟的部分按30分钟计算有甲、乙、丙三人相互独立的到租车点租车骑行各租一车一次设甲、乙、丙不超过30分钟还车的概率分别为,三人租车时间都不会超过60分钟甲、乙均租用“小绿车”,丙租用“小黄车”.

求甲、乙两人所付的费用之和等于丙所付的费用的概率;

2设甲、乙、丙三人所付的费用之和为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)讨论的单调性;

(2)若存在及唯一正整数,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)经过点(0, ),离心率e=
(Ⅰ)求椭圆C的方程及焦距.
(Ⅱ)椭圆C的左焦点为F1 , 右顶点为A,经过点A的直线l与椭圆C的另一交点为P.若点B是直线x=2上异于点A的一个动点,且直线BF1⊥l,问:直线BP是否经过定点?若是,求出该定点的坐标;若不是,说明理由.

查看答案和解析>>

同步练习册答案