设数列S1,S2,…是一个严格递增的正整数数列.
(1)若SSk+1,SSk+1是该数列的其中两项,求证:SSk+1≤SSk+1;
(2)若该数列的两个子数列SS1,SS2…和SS1+1,SS2+1,…都是等差数列,求证:这两个子数列的公差相等;
(3)若(2)中的公差为1,求证:SSk+1≥SSk+1,并证明数列{Sn}也是等差数列.
分析:(1)由题设条件知:Sk+1≤Sk+1∴SSk+1≤SSk+1.
(2)设两子数列的首项分别为a,b,公差分别为d1,d2.由题设知a-b<(k-1)(d2-d1)≤a-b+d1,由此可知d1=d2
(3)由题设知SSk+1=SSk+1.数列{Sn}是严格递增的正整数数列,所以SSk+1≤SSk+1,由此能够导出Sk+1=Sk+1,故数列{Sn}是公差为1的等差数列.
解答:解:(1)证明:由条件知:Sk+1≤Sk+1∴SSk+1≤SSk+1.
(2)设两子数列的首项分别为a,b,公差分别为d1,d2.
∵SSk<SSk+1≤SSk+1
∴a+(k-1)d1<b+(k-1)d2≤a+kd1
即a-b<(k-1)(d2-d1)≤a-b+d1
上式左,右端皆为常数,中间的k∈N,故必须d2-d1=0,
∴d1=d2
(3)∵公差为1,∴SSk+1=SSk+1.
又数列{Sn}是严格递增的正整数数列,
∴SSk+1≤SSk+1
∴SSk+1≤SSk+1
又由(1)知∴SSk+1≥SSk+1∴SSk+1=SSk+1.
故Sk+1=Sk+1(k∈N),即数列{Sn}是公差为1的等差数列.
点评:本题考查等差数列的性质和应用,解题时要注意公式的灵活运用.