精英家教网 > 高中数学 > 题目详情
18.已知全集U={1,2,3,4,5,6},A={2,4,6},B={1,2,5},则A∩(∁UB)等于(  )
A.{2}B.{4,6}C.{2,3,4,6}D.{1,2,4,5,6}

分析 直接由集合的运算性质得答案.

解答 解:由全集U={1,2,3,4,5,6},A={2,4,6},B={1,2,5},
∴∁UB={3,4,6}.
则A∩(∁UB)={2,4,6}∩{3,4,6}={4,6}.
故选:B.

点评 本题考查了交、并、补集的混合运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.不等式ax2+ax+1≥0对一切x∈R恒成立,则实数a的取值范围是(  )
A.0<a<4B.0≤a<4C.0<a≤4D.0≤a≤4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.集合A=$\left\{x\right.\left|{\left.{(x-\frac{1}{2})(x-3)=0}\right\}}\right.,B=\left\{x\right.\left|{\left.{ln({x^2}+ax+a+\frac{9}{4})=0}\right\}}$
(1)若集合B只有一个元素,求实数a的值;
(2)若B是A的真子集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若f(x)是定义在R上的减函数,且对任意的a、b∈R满足:f(a+b)=f(a)+f(b).且f(-2)=12
(1)判断f(x)的奇偶性;
(2)若f(k-2)<f(2k)-6,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a∈R,命题p:“?x∈[0,2],2x-4x+a≤0均成立”,命题q:“函数f(x)=ln(x2+ax+1)定义域为R”,
(1)若命题p为真命题,求实数a的取值范围;
(2)若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知:定义在R上的二次函数f(x)满足:f(1)=f(3),f(x)min=1,f(0)=5.
(1)求f(x)的表达式;
(2)求满足f(a)<2时,实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知P:|$\frac{1-a}{3}$|<2,q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B≠∅,若“p或q”是真命题,“p且q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)为奇函数,当x>0时,$f(x)={x^2}+\frac{1}{x^2}$,则f(-1)=(  )
A.2B.1C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.直线l的极坐标方程为:ρcosθ-ρsinθ+4=0,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)
(1)写出l与C的直角坐标方程
(2)求C上的点到l距离的最大值与最小值.

查看答案和解析>>

同步练习册答案