精英家教网 > 高中数学 > 题目详情
13.曲线y=ex在点x=0处的切线的倾斜角为$\frac{π}{4}$.

分析 求出函数的导数,利用切线斜率和导数之间的关系即可得到结论.

解答 解:函数的导数为f′(x)=ex
则f′(0)=1,即切线斜率k=f′(0)=1,
由tanα=1,解得α=$\frac{π}{4}$,
故答案为$\frac{π}{4}$.

点评 本题主要考查导数的几何意义,以及切线斜率和倾斜角的计算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中正确是①④.(填序号即可)
①|BM|是定值;
②总有CA1⊥平面A1DE成立;
③存在某个位置,使DE⊥A1C;
④存在某个位置,使MB∥平面A1DE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\sqrt{x+1}$+lg(3-x)的定义域为A,g(x)=x2+1的值域为B,设全集U=R.
(1)求A,B;
(2)求A∩(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow a$与$\overrightarrow b$所成的角为$\frac{5}{6}π$,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$,求$|3\overrightarrow a+2\overrightarrow b|$,并求$3\overrightarrow a+2\overrightarrow b$与$\overrightarrow a$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算下列各式:
(1)${0.001^{-\frac{1}{3}}}-{(\frac{7}{8})^0}+{16^{\frac{3}{4}}}+{(\sqrt{2}•\root{3}{3})^6}$
(2)${log_3}\frac{{\root{4}{27}}}{3}+lg25+lg4-{7^{{{log}_7}2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数$f(x)=1+\frac{x}{2}-sinx,x∈(0,2π)$,则 f(x)的单调减区间是(0,$\frac{π}{3}$),($\frac{5π}{3}$,2π).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=|x2-4x|的单调减区间为(-∞,0),(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某射手射击一次,命中环数与概率如表:
命中环数  10环  9环  8环  7环7环以下
  概率0.160.320.240.200.08
计算:
(1)射击一次,命中环数不低于7环的概率.
(2)射击一次,至少命中8环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:
 x(年) 2 3 4 5 6
 y(万元) 2.2 3.8 5.56.5  7.0
若由资料知,y对x呈线性相关关系,且有如下参考数据:$\sum_{i=1}^5{{x_i}^2}=90,\sum_{i=1}^5{{x_i}{y_i}}=112.3$,则回归直线方程为(  )
A.y=1.23x+0.08B.y=1.25x-0.5C.y=1.28x-0.12D.y=1.24x+0.04

查看答案和解析>>

同步练习册答案