(06年江西卷理)(12分)
如图,椭圆Q:(a>b>0)的右焦点F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P是线段AB的中点
(1)求点P的轨迹H的方程
(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),确定q的值,使原点距椭圆的右准线l最远,此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?
解析:如图,(1)设椭圆Q:(a>b>0)
上的点A(x1,y1)、B(x2,y2),又设P点坐标为P(x,y),则
1°当AB不垂直x轴时,x1¹x2,
由(1)-(2)得
b2(x1-x2)2x+a2(y1-y2)2y=0
\b2x2+a2y2-b2cx=0…………(3)
2°当AB垂直于x轴时,点P即为点F,满足方程(3)
故所求点P的轨迹方程为:b2x2+a2y2-b2cx=0
(2)因为,椭圆 Q右准线l方程是x=,原点距l
的距离为,由于c2=a2-b2,a2=1+cosq+sinq,b2=sinq(0<q£)
则==2sin(+)
当q=时,上式达到最大值。此时a2=2,b2=1,c=1,D(2,0),|DF|=1
设椭圆Q:上的点 A(x1,y1)、B(x2,y2),三角形ABD的面积
S=|y1|+|y2|=|y1-y2|
设直线m的方程为x=ky+1,代入中,得(2+k2)y2+2ky-1=0
由韦达定理得y1+y2=,y1y2=,
4S2=(y1-y2)2=(y1+y2)2-4 y1y2=
令t=k2+1³1,得4S2=,当t=1,k=0时取等号。
因此,当直线m绕点F转到垂直x轴位置时,三角形ABD的面积最大。
科目:高中数学 来源: 题型:
(06年江西卷理)如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分别是S1,S2,则必有( )
A.S1<S2 B.S1>S
查看答案和解析>>
科目:高中数学 来源: 题型:
(06年江西卷理)如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形,ÐACB=90°,AC=6,BC=CC1=,P是BC1上一动点,则CP+PA1的最小值是___________
查看答案和解析>>
科目:高中数学 来源: 题型:
(06年江西卷理)(12分)
如图,已知△ABC是边长为1的正三角形,M、N分别是
边AB、AC上的点,线段MN经过△ABC的中心G,
设ÐMGA=a()
(1)试将△AGM、△AGN的面积(分别记为S1与S2)表示为a的函数
(2)求y=的最大值与最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
(06年江西卷理)(12分)
如图,在三棱锥A-BCD中,侧面ABD、ACD
是全等的直角三角形,AD是公共的斜边,
且AD=,BD=CD=1,另一个侧面是正三角形
(1)求证:AD^BC
(2)求二面角B-AC-D的大小
(3)在直线AC上是否存在一点E,使ED与面BCD
成30°角?若存在,确定E的位置;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com