精英家教网 > 高中数学 > 题目详情
7.已知平面向量$\overrightarrow a,\overrightarrow b$是非零向量,$|\overrightarrow a|=2$,$\overrightarrow a⊥(\overrightarrow a+2\overrightarrow b)$,则向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影为(  )
A.1B.-1C.2D.-2

分析 先根据向量垂直,得到$\overrightarrow{a}•\overrightarrow{b}$=-2,再根据投影的定义即可求出.

解答 解:∵平面向量$\overrightarrow a,\overrightarrow b$是非零向量,$|\overrightarrow a|=2$,$\overrightarrow a⊥(\overrightarrow a+2\overrightarrow b)$,
∴$\overrightarrow{a}$•($\overrightarrow{a}+2\overrightarrow{b}$)=0,
即${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}•\overrightarrow{b}$=0,
即$\overrightarrow{a}•\overrightarrow{b}$=-2,
∴向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影为$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|}$=$\frac{-2}{2}$=-1,
故选:B.

点评 本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知F是抛物线y2=2px(p>0)的焦点,过F的直线与抛物线交于A、B两点,AB中点为C,过C作抛物线的准线的垂线交准线于C1点,若CC1中点M的坐标为($\sqrt{2}$,4),则p=4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,则输出的结果为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(λ,-1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=e2-x+a,x∈R的图象在点x=0处的切线为y=bx.
(Ⅰ)求函数f(x)的解析式.
(Ⅱ)当x∈R时,求证:f(x)≥-x2+x;
(Ⅲ)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某楼盘按国家去库存的要求,据市场调查预测,降价销售.今年110平方米套房的销售将以每月10%的增长率增长;90平方米套房的销售将每月递增10套.已知该地区今年1月份销售110平方米套房和90平方米套房均为20套,据此推测该地区今年这两种套房的销售总量约为1320套(参考数据:1.111≈2.9,1.112≈3.1,1.113≈3.5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:${ρ^2}=\frac{12}{{2+{{cos}^2}θ}}$,直线l:$2ρcos(θ-\frac{π}{6})=\sqrt{3}$.
(1)写出直线l的参数方程;
(2)设直线l与曲线C的两个交点分别为A、B,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(a>0,b>0),点(4,-2)在它的一条渐近线上,则离心率等于(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知弧长为πcm的弧所对的圆心角为$\frac{π}{4}$,则这条弧所在圆的直径是8cm,这条弧所在的扇形面积是2πcm2

查看答案和解析>>

同步练习册答案