精英家教网 > 高中数学 > 题目详情
已知双曲线的左、右顶点分别为A1,A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.
(1)求直线A1P与A2Q交点的轨迹E的方程;
(2)若过点H(0,h)(h>1)的两条直线l1和l2与轨迹E都只有一个交点,且l1⊥l2,求h的值.
【答案】分析:(1)先确定直线A1P与A2Q的方程;再联立方程组解之(相乘处理);最后利用点P(x1,y1)在双曲线上,消去参数x1、y1(整体消元)求出轨迹E的方程;
(2)先由l1⊥l2设出两直线方程;再分别与椭圆方程联立,根据只有一个交点(即△=0)得出k、h的两个方程;最后解出h的值.
解答:解:(1)由A1,A2为双曲线的左右顶点知,

两式相乘得
因为点P(x1,y1)在双曲线上,所以,即
所以,即
故直线A1P与A2Q交点的轨迹E的方程为.(x≠,x≠0)
(2)设l1:y=kx+h(k>0),则由l1⊥l2知,
将l1:y=kx+h代入
即(1+2k2)x2+4khx+2h2-2=0,
若l1与椭圆相切,则△=16k2h2-4(1+2k2)(2h2-2)=0,即1+2k2=h2
同理若l2与椭圆相切,则
由l1与l2与轨迹E都只有一个交点包含以下四种情况:
[1]直线l1与l2都与椭圆相切,即1+2k2=h2,且,消去h2,即k2=1,
从而h2=1+2k2=3,即
[2]直线l1过点,而l2与椭圆相切,此时,解得
[3]直线l2过点,而l1与椭圆相切,此时,1+2k2=h2,解得
[4]直线l1过点,而直线l2过点,此时,∴
综上所述,h的值为
点评:本题综合考查直线与圆锥曲线的位置关系及点的轨迹方程求法;同时考查方程思想、运算能力等.
练习册系列答案
相关习题

科目:高中数学 来源:江西省09-10学年度高二下学期期末联考考试数学试题(文科) 题型:解答题

(本小题满分14分)已知双曲线的左、右顶点分别为,点是双曲线上不同的两个动点.

(1)求直线交点的轨迹E的方程

(2若过点的两条直线与轨迹E都只有一个交点,且,求的值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省八校高三第一次联考理科数学卷 题型:解答题

(本小题满分分)

已知双曲线的左、   右顶点分别为,动直线与圆相切,且与双曲线左、右两支的交点分别为.

(Ⅰ)求的取值范围,并求的最小值;

(Ⅱ)记直线的斜率为,直线的斜率为,那么,是定值吗?并证明

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省淄博市高三第一学期期末数学理卷 题型:选择题

已知双曲线的左、右顶点分别为A、B,双曲线在第一象限的图象上有一点P,,则

A、        B、

C、         D、

 

查看答案和解析>>

科目:高中数学 来源:2013届山东省济宁市高二上学期期末考试理科数学 题型:解答题

(本小题满分12分)已知双曲线的左、右顶点分别为,点,是双曲线上不同的两个动点.

(1)求直线交点的轨迹E的方程

(2)若过点H(0, h)(h>1)的两条直线与轨迹E都只有一个公共点,且,求的值.

 

 

查看答案和解析>>

科目:高中数学 来源:浙江省2009-2010学年第二学期高二3月月考数学试卷 题型:选择题

已知双曲线的左、右顶点分别为A、B,双曲线在第一象限的图象上有一点P,,则                      (  )

A.      B.

C.    D.

 

查看答案和解析>>

同步练习册答案