精英家教网 > 高中数学 > 题目详情

设点在直线上,则当取得最小值时,函数的图象大致为(   )

 

【答案】

B

【解析】

试题分析:∵点在直线上,∴a+3b=2,则=,当且仅当时取等号,即,所以,根据图像的变换得答案为B。

考点:本题考查基本不等式、指数函数的图像及函数的图像变换。

点评:本题主要考查基本不等式的应用,注意检验等号成立的条件,式子的变形是解题的关键,属于基础题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设点A,B的坐标分别为(-a,0),(a,0).直线AM,BM相交于点M,且他们的斜率之积为k.则下列说法正确的是
(2)(3)
(2)(3)

(1)当k=
b2
a2
时,点M的轨迹是双曲线.(其中a,b∈R+
(2)当k=-
b2
a2
时,点M的轨迹是部分椭圆.(其中a,b∈R+
(3)在(1)条件下,点p(x0,y0)(x0<0)是曲线上的点F1(-
a2+b2
,0)
,F2
a2+b2
,0),且|PF1|=
1
4
|PF2|,则(1)的轨迹所在的圆锥曲线的离心率取值范围(1,
5
3
]
(4)在(2)的条件下,过点F1(-
a2-b2
,0),F2
a2-b2
,0).满足
.
MF1
.
MF2
=0的点M总在曲线的内部,则(2)的轨迹所在的圆锥曲线的离心率的取值范围是(
2
2
,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设点A,B的坐标分别为(-a,0),(a,0).直线AM,BM相交于点M,且他们的斜率之积为k.则下列说法正确的是______
(1)当k=
b2
a2
时,点M的轨迹是双曲线.(其中a,b∈R+
(2)当k=-
b2
a2
时,点M的轨迹是部分椭圆.(其中a,b∈R+
(3)在(1)条件下,点p(x0,y0)(x0<0)是曲线上的点F1(-
a2+b2
,0)
,F2
a2+b2
,0),且|PF1|=
1
4
|PF2|,则(1)的轨迹所在的圆锥曲线的离心率取值范围(1,
5
3
]
(4)在(2)的条件下,过点F1(-
a2-b2
,0),F2
a2-b2
,0).满足
.
MF1
.
MF2
=0的点M总在曲线的内部,则(2)的轨迹所在的圆锥曲线的离心率的取值范围是(
2
2
,1)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都七中高二(下)3月月考数学试卷(理科)(解析版) 题型:填空题

设点A,B的坐标分别为(-a,0),(a,0).直线AM,BM相交于点M,且他们的斜率之积为k.则下列说法正确的是   
(1)当k=时,点M的轨迹是双曲线.(其中a,b∈R+
(2)当k=-时,点M的轨迹是部分椭圆.(其中a,b∈R+
(3)在(1)条件下,点p(x,y)(x<0)是曲线上的点F1(-,F2,0),且|PF1|=|PF2|,则(1)的轨迹所在的圆锥曲线的离心率取值范围(1,]
(4)在(2)的条件下,过点F1(-,0),F2,0).满足=0的点M总在曲线的内部,则(2)的轨迹所在的圆锥曲线的离心率的取值范围是

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都七中高二(下)3月月考数学试卷(文科)(解析版) 题型:填空题

设点A,B的坐标分别为(-a,0),(a,0).直线AM,BM相交于点M,且他们的斜率之积为k.则下列说法正确的是   
(1)当k=时,点M的轨迹是双曲线.(其中a,b∈R+
(2)当k=-时,点M的轨迹是部分椭圆.(其中a,b∈R+
(3)在(1)条件下,点p(x,y)(x<0)是曲线上的点F1(-,F2,0),且|PF1|=|PF2|,则(1)的轨迹所在的圆锥曲线的离心率取值范围(1,]
(4)在(2)的条件下,过点F1(-,0),F2,0).满足=0的点M总在曲线的内部,则(2)的轨迹所在的圆锥曲线的离心率的取值范围是

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(北京卷解析版) 题型:解答题

已知曲线C:(m∈R)

(1)   若曲线C是焦点在x轴点上的椭圆,求m的取值范围;

(2)     设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。

【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当解得,所以m的取值范围是

(2)当m=4时,曲线C的方程为,点A,B的坐标分别为

,得

因为直线与曲线C交于不同的两点,所以

设点M,N的坐标分别为,则

直线BM的方程为,点G的坐标为

因为直线AN和直线AG的斜率分别为

所以

,故A,G,N三点共线。

 

查看答案和解析>>

同步练习册答案