精英家教网 > 高中数学 > 题目详情

【题目】本题满分14分如图,我市有一个健身公园,由一个直径为2km的半圆和一个以为斜边的等腰直角三角形构成,其中的中点.现准备在公园里建设一条四边形健康跑道,按实际需要,四边形的两个顶点分别在线段上,另外两个顶点在半圆上, ,且间的距离为1km.设四边形的周长为km

1分别为的中点,求长;

2求周长的最大值.

【答案】12

【解析】

试题分析:1,就是求圆中弦长,关键求出圆心到弦所在直线距离:因为分别为的中点,所以圆心到直线CD距离为半径的一半,即,又间的距离为1km,所以圆心到弦所在直线距离为,因此

2四边形的周长,就是要表示出四边长度,如何取自变量是解决问题的关键,设角是一个较好的方法,如设,其中M为AB中点,则,再根据基本不等式其周长最值

试题解析:(1)解:连结并延长分别交,连结

分别为的中点,

为等腰直角三角形,为斜边,

3分

中,

6

(2)解法1

中,

8分

10

时取等号

时,周长的最大值为 14

解法2 为原点,轴建立平面直角坐标系.

8分

10

时取等号

时,周长的最大值为 14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=8,AD=CD=4,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图(b)所示.

(1)求证:BC⊥平面ACD;
(2)求几何体D﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费用支出x万元与销售额y万元之间有如下的对应数据:

x

2

4

5

6

8

y

30

40

60

50

70


(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为12万元时,销售收入y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为
(注:方差 ,其中 为x1 , x2 , …,xn的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列.

(1)是否存在实数,使数列是等比数列?若存在,求的值;若不存在,请说明理由;

(2)若是数列的前项和,求满足的所有正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分10分如图,在长方体中,相交于点,点在线段与点不重合

1若异面直线所成角的余弦值为,求的长度;

2,求平面与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,D,E分别是BC,AB的中点,PA⊥平面ABC,∠BAC=90°,AB≠AC,AC>AD,PC与DE所成的角为α,PD与平面ABC所成的角为β,二面角P﹣BC﹣A的平面角为γ,则α,β,γ的大小关系是(
A.α<β<γ
B.α<γ<β
C.β<α<γ
D.γ<β<α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x0 , x0+ 是函数f(x)=cos2(wx﹣ )﹣sin2wx(ω>0)的两个相邻的零点
(1)求 的值;
(2)若对 ,都有|f(x)﹣m|≤1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

已知抛物线的焦点为上异于原点的任意一点,过点的直线于另一点,交轴的正半轴于点,且有.当点的横坐标为时, 为正三角形.

)求的方程;

)若直线,且有且只有一个公共点

)证明直线过定点,并求出定点坐标;

的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案